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ABSTRACT OF DISSERTATION

COMPUTER SIMULATION AND MODELING OF
PHYSICAL AND BIOLOGICAL PROCESSES USING
PARTIAL DIFFERENTIAL EQUATIONS

Scientific research in areas of physics, chemistry, and biology traditionally depends
purely on experimental and theoretical methods. Recently numerical simulation is
emerging as the third way of science discovery beyond the experimental and theoret-
ical approaches. This work describes some general procedures in numerical computa-
tion, and presents several applications of numerical modeling in bioheat transfer and
biomechanics, jet diffusion flame, and bio-molecular interactions of proteins in blood
circulation.

A three-dimensional (3D) multilayer model based on the skin physical structure
is developed to investigate the transient thermal response of human skin subject to
external heating. The temperature distribution of the skin is modeled by a bioheat
transfer equation. Different from existing models, the current model includes water
evaporation and diffusion, where the rate of water evaporation is determined based
on the theory of laminar boundary layer. The time-dependent equation is discretized
using the Crank-Nicolson scheme. The large sparse linear system resulted from dis-
cretizing the governing partial differential equation is solved by GMRES solver.

The jet diffusion flame is simulated by fluid flow and chemical reaction. The
second-order backward Euler scheme is applied for the time dependent Navier-Stokes
equation. Central difference is used for diffusion terms to achieve better accuracy, and
a monotonicity-preserving upwind difference is used for convective ones. The coupled
nonlinear system is solved via the damped Newton’s method. The Newton Jacobian
matrix is formed numerically, and the resulting linear system is ill-conditioned and is
solved by Bi-CGSTAB with the Gauss-Seidel preconditioner.

A novel convection-diffusion-reaction model is introduced to simulate fibroblast
growth factor (FGF-2) binding to cell surface molecules of receptor and heparan
sulfate proteoglycan and MAP kinase signaling under flow condition. The model in-
cludes three parts: the flow of media using incompressible Navier-Stokes equation,
the transport of FGF-2 using a convection-diffusion transport equation, and the local
binding and signaling by chemical kinetics. The whole model consists of a set of cou-
pled nonlinear partial, differential equations (PDEs) and a set of coupled nonlinear
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ordinary differential equations (ODEs). To solve the time-dependent PDE system,
we use second order implicit Euler method by finite volume discretization. The ODE
system is stiff and is solved by an ODE solver VODE using backward differencing for-
mulation (BDF). Findings from this study have implications with regard to regulation
of heparin-binding growth factors in circulation.

KEYWORDS: Numerical simulation, partial differential equations, bioheat trans-
fer, laminar diffusion flame, fibroblast growth factor

Wensheng Shen

May 15, 2007

www.manharaa.com




COMPUTER SIMULATION AND MODELING OF
PHYSICAL AND BIOLOGICAL PROCESSES USING
PARTIAL DIFFERENTTAL EQUATIONS

By
Wensheng Shen

Jun Zhang, Ph.D.
Director of Dissertation

Grzegorz W. Wasilkowski, Ph.D.
Director of Graduate Studies

May 15, 2007
Date

www.manharaa.com



RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the
University of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may
be noted, but quotations or summaries of parts may be published only with the
permission of the author, and with the usual scholarly acknowledgements.

Extensive copying or publication of the dissertation in whole or in part also requires
the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure
the signature of each user.

Name Date

www.manaraa.com



DISSERTATION

Wensheng Shen

The Graduate School
University of Kentucky
2007

www.manharaa.com



COMPUTER SIMULATION AND MODELING OF
PHYSICAL AND BIOLOGICAL PROCESSES USING
PARTIAL DIFFERENTIAL EQUATIONS

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the
College of Engineering
at the University of Kentucky

By
Wensheng Shen
Lexington, Kentucky
Director: Jun Zhang, Ph.D., Professor of Computer Science
Lexington, Kentucky
2007
Copyright © Wensheng Shen 2007

www.manharaa.com




ACKNOWLEDGEMENTS

It took about four years for the author to finish this dissertation. During his years
of study at UKY, the author encountered many difficulties in life and study, and was
once deeply worried about the possibility of completing his Ph.D. degree in Computer
Science. Thanks for all kinds of support, help, and encouragement from many people,
fortunately the author is managed to finish his thesis.

First of all, the author would like to thank his faculty advisor, Dr. Jun Zhang,
who has inspired and encouraged him to conduct research in computer modeling and
simulation, and led him to the area of computational biology. Dr. Zhang has been a
great mentor on every account, and his broad knowledge and constructive suggestions
to this dissertation are sincerely appreciated.

The author would like to thank other faculty members of his Advisory Committee:
Dr. Fuhua (Frank) Cheng (Department of Computer Science), Dr. Grzegorz W.
Wasilkowski (Department of Computer Science) and Dr. Fugian Yang (Department
of Chemical and Materials Engineering), for their insightful comments and useful
suggestions on this work. The author would also like to thank the outside examiner
Dr. James M. McDonough (Department of Mechanical Engineering) for taking the
time to review this document and his helpful comments on this dissertation.

The author would like to express his appreciation to his research collaborators,
Dr. Michael Fannon, Department of Ophthalmology and Visual Sciences, College
of Medicine, University of Kentucky, Dr. Kimberly Forsten-Williams, Department
of Chemical Engineering, Virginia Polytechnic Institute and State University, for
their invaluable comments to this dissertation and interesting introduction in biology,
Dr. Fugian Yang, Department of Chemical and Materials Engineering, University of
Kentucky, and Dr. Jing Liu, Cryogenics Laboratory, Technical Institute of Physics
and Chemistry, Chinese Academy of Sciences, for collaboration in bioheat transfer.

Thanks also go.to.all members in the Laboratory for High Performance Scientific

iii

www.manaraa.com



Computing & Computer Simulation, Dr. Chi Shen, Dr. Jeonghwa Lee, Dr. Shuting
Xu, Dr. Ning Kang, Ms. Eun-Joo Lee, Ms. Jie Wang, Mr. Ning Cao, Mr. Hao
Ji, Mr. Yin Wang, Mr. Dianwei Han, Mr. Cheng Qin, Mr. Zhenmin Lin, Mr. Qi
Zhuang, Ms. Beibei Li, Mr. Changjiang Zhang, Mr. Xuwei Liang, and Mr. Lian Liu,
for helpful discussions and creating a friendly working environment together.

Finally the author would like to thank his family members. The author needs to
thank his parents for giving him life and their continuous support of his education in
his middle school, high school, and university studies. The author would like to thank
his sister and brother for their efforts trying to make his life and study easier. Most
important, the author should thank his wife, Hongyan Zhang, his daughter, Shirley,
and his son, James for their endless love, ever-lasting support, and great patience
during his graduate study in Lexington, KY toward a Ph.D. degree in Computer
Science, his second Ph.D. degree.

The author would like to express his gratitude to the funding agencies that have
provided financial support. The research work with this dissertation was supported

in part by:
e U.S. National Science Foundation (NSF).
e U.S. National Institutes of Health (NIH).

e Kentucky Science and Engineering Foundation (KSEF).

v

www.manaraa.com



Table of Contents

Acknowledgements . . . . .. ... oL iii
List of Tables . . . . . . . . . . . . . e vii
List of Figures . . . . . . . . . o L viii
List of Files . . . . . . . . . . . e xii
1 Introduction . . . . . . . . . . .. 1
1.1 Motivation . . . . . . . . . .. 1

1.2 Modeling Procedure . . . . . . ... ... ..o L. 2

1.3 Solution Methods . . . . . . . . . .. ... ... ... 4

2 TIterative Methods and Effective Preconditioners . . . . . . . ... ... .. 7
2.1 Direct Methods . . . . . . . . .. . ... ... 7
2.2 Stationary Iterative Methods . . . . . .. . .. .. ... ... ... 8
2.3 Krylov Subspace Based Iterative Methods . . . .. ... ... .. .. 12
2.4 Multigrid Methods . . . . . .. ..o 15

2.5 Preconditioners . . . . . . .. ... 17

3 Bioheat Transfer and Biomechanics in Soft Tissue . . . . . .. ... .. .. 22
3.1 Introduction . . . . . . . . . . ... ... 22
3.2 Constitutive Equations . . . . . . . . .. ... .. ... ... 24
3.2.1 Heat transfer process . . . . . . . ... ... ... 24

3.2.2 Stress, strain, and displacement evolution . . . . . .. . . . .. 25

3.3 Numerical Techniques . . . . .. . . ... ... .. .00, 28
3.3.1 Finite difference discretization . . . . . . ... ... ... ... 28

3.3.2 [Iterativesolver . . . . . ... ... ... ... ... ..., 29

3.4 Numerical Experiments and Discussion . . . . . .. ... ... .... 31
3.4.1 Case study: hyperthermia model . . . . ... ... ... ... 31

3.4.2 Case study: sinusoidal surface heating model . . . . . . . . .. 35

3.4.3 Computational Performance . . . . .. ... ... ... .... 37

3.5 Summary ... ... 40

4 Thermal Response of Skin Subject to Laser Heating . . . . . . . ... ... 42
4.1 Introduction . . . . . . . . .. .. 42
4.2 'The Multilayer Model . . . . . . . . .. .. ..o 44
4.3 Water Evaporation and Diffusion . . .. ... .. ... ... ..... 47
4.4 Numerical Scheme and Solution Strategy . . . . . .. ... ... ... 50
4.5 Stability Analysis . . . . . ... oo 53

4.6 Numerical Experiments and Discussions . . . . ... ... ... ... 54
4.7 Summary . ... .o 63

v

www.manaraa.com



5 Thermal Injury Prediction with Strain Energy . . . . . . . ... ... ... 65

5.1 Imtroduction . . . . . . . . ..o Lo 65

5.2 Thermal Stress and Deformation . . ... ... ... ... ... ... 66

5.3 Thermal Injury Prediction . . . . . . ... ... ... ... .. ... 68

5.4 Numerical Algorithm and Solution Procedure . . . .. .. ... ... 69

5.5 Numerical Experiments and Discussions . . . . . .. ... ... ... 70

5.6 Summary . . . ... ... e 7

6 Steady and Unsteady Diffusion Flame Solver . . . . . . . . ... ... ... 79
6.1 Imtroduction . . . . . . . . ... L 79

6.2 Laminar Diffusion Flame Model . . . . . . .. .. .. ... ... ... 80
6.2.1 Vorticity-Velocity Formulation . . . . . .. .. ... ... ... 80

6.2.2 Flame Sheet Model . . . . . . ... .. ... ... ....... 81

6.2.3 Boundary Conditions . . . . . . .. .. ... ... ....... 83

6.3 Newton’s Method . . . . . . . .. ... . L oL 83
6.4 Finite Difference Approximation and Linear Solver . . . ... .. .. 86

6.5 Results and Discussion . . . . . . .. ... o o000 87
6.6 Summary . . . ... e 93

7 Protein Transport in Capillary with Competitive Binding and Signaling . . 94
7.1 Introduction . . . . . . . . . . . ... e 94
7.2 Incompressible Navier-Stokes Equations . . . . . . . ... ... .. .. 98
7.3 Transport Equation of FGF-2 . . . . ... ... ... ... ...... 99
7.4 Competitive Binding Kinetics . . . . . . ... ... ... 0. 102

7.5 Numerical Procedure . . . . . . ... ... o o o000 106

7.6 Results. . . . .. .. 106
7.6.1 Media flow in artificial capillary . . . . . ... .. ... .. .. 106

7.6.2 Ligand transport and bindingat 4°C . . . . . .. ... .. .. 111

7.6.3 Ligand transport and binding at 37°C . . .. ... ... ... 117

7.6.4 The effect of flow on ligand transport . . . . . .. ... . ... 122

7.7 Discussion . . . . . . . ..o Lo 125
7.8 Summary . . ... ... e 130

8 Conclusion and Future Work . . . . . . . ... ... . 0oL 132
81 Conclusion . . . . . . . . L 132
82 Future Work . . . . . . . ..o 135
Appendix . . . .. 138
Bibliography . . . . . .. Lo 139
T 150

vi

www.manaraa.com



List of Tables

3.1 Thermal physical properties used in this computation.. . . . . . . .. 24
3.2 Nomenclature for symbols used in Eq. (5.1). . .. ... ... .. ... 27
3.3 Information on the coefficient matrix A for various mesh sizes (hyper-
thermia). . . . . . . ... 39
3.4 Computational performance with/without ILUT at n = 6859 (hyper-
thermia). . . . . . . ... 40
3.5 Computational performance with/without ILUT at n = 59319 (hyper-
thermia). . . . . . . ... 40
4.1 Skin thickness and thermal physical properties used in this model. . . 55

7.1 Chemical reactions included in the base model using mass-action ki-
netics and their relevant parameters. . . . .. ... ... ... .. .. 105

vii

www.manharaa.com




List of Figures

3.1 An illustration of the computational domain of a soft tissue. . . . . . 26
3.2 The 19 point finite difference stencil defined in a unit cube. . . . . . . 29
3.3 Temperature distribution at z = 0.09 m and ¢ = 200 s (hyperthermia). 33
3.4 wu displacement at z = 0.009 m and ¢ = 200 s (hyperthermia). . . . . . 33

3.5 Average normal stress P at z = 0.009 m and ¢ = 200 s (hyperthermia). 34
3.6 Transient temperature distribution at (0.009, 0.032,0.04)m (hyperther-

MIA). .« e e 35
3.7 Transient displacement distribution at (0.009, 0.032,0.04)m (hyperther-

mia). . . ... 36
3.8 Transient average stress distribution P at (0.009,0.032,0.04)m (hyper-

thermia). . . . . . . ... 37
3.9 Transient temperature at skin surface (sinusoidal heating). . . . . . . 38
3.10 Transient displacement at skin surface (sinusoidal heating). . . . . . . 38
3.11 Transient average normal stress at skin surface (sinusoidal heating). . 39
4.1 The computational domain of a soft tissue (a three layer skin). . . . . 46
4.2 The interface between two different materials. . . . . . . ... .. .. 55

4.3 3D temperature distribution of the skin subject to laser-heating with
Gaussian profile at ¢ = 2's. (a) The mesh of the computational domain,
uniform in the y and z directions, non-uniform in the z direction. (b)
Contour plot of temperature viewed from the skin surface (y — z plane
at £ = 0.01208 m). (c¢) Contour plot of temperature viewed from one
side (z — z plane at y = 0.005 m) of the computational domain. (d)
Contour plot of temperature viewed anatomically (starting from the
point x = 0.01208 m, y = 0 m, and z = 0 m to view the temperature
distribution on the three adjacent orthogonal planes. The grids and
scales are on in (a) and (b) but off in (c) and (d). The boundaries of
computational domain are plotted in red. The blue color indicates the
interface between epidermis and dermis, and the green color indicates
the interface between dermis and subcutaneous. The parameters of the
Gaussian shaped laser beam corresponding to Eq. (4.2) are P =12 W,
W =0.0025 m, and p, = 80, 2.4, and 1 mm ! in the epidermis, dermis

and subcutaneous layers respectively. . . . .. ... 0. 58
4.4 The temperature change as a function of skin depth with/without evap-
oration. . . . . . .. L L 59

4.5 The temperature history in the center of the heated region on the skin
surface which is subject to periodic pulsed laser-heating for the time
duration from 0 to 2 s. (a) Water evaporation and diffusion are not
considered. (b) Water evaporation and diffusion are considered. . . . 60

4.6 Water transport in skin due to temperature rise caused by periodic
pulsed laser-heating for the time duration from 0 to 2 s. (a) The
distribution of water content in skin in three-dimension. (b) Water
content as a function of time at the point of z = 0.01208 m, y = 2 =0

viii

www.manaraa.com



4.7 Temperature and water content as a function of x along the center line
(y = z = 0 m) at different time. (a) Temperature distribution. (b)
Water content distribution. . . . . . ... o000 62
4.8 The thermal response of skin due to laser-heating when cryogen spray
cooling is considered. (a) 3D temperature distribution. (b) Tempera-
ture variation as a functionof z. . . . . ... 63

5.1 Two-dimensional temperature and accumulated damage plots for laser
heating with a Gaussian profile. (a) Temperature (°C) distribution at
the base of the epidermis layer after 50 s. (b) The contour of mechanical
energy (J/cm?) at the base of the epidermis layer after 50 s. (c) The
contour of accumulated damage at the base of the epidermis layer after
50 s without the consideration of mechanical energy. (d) The contour
of accumulated damage at the base of the epidermis layer after 50 s
with the consideration of mechanical energy. Note: in Figs. 5.1(c) and
5.1(d) the accumulated damage is scaled to Q' =1+4+1gQ. . ... .. 74
5.2  Contour plot of accumulated damage at the base of the dermis layer
after 200 s. (a) Mechanical energy is not considered (b) Mechanical
energy is considered. Note: the accumulated damage is scaled to Q' =
T4+1gQ o e 75
5.3 Time to second degree burn at the base of skin epidermis. . . . . . . 76
5.4 Predicted time to the third degree burn for various steam temperature. 77

6.1 A sample 9-point grid. . . . . ..o oL 88
6.2 The temperature profile obtained from the steady-state equations for
the diffusion flame. . . . . .. ..o oo 92
6.3 The dependency of flame temperature on time: (a) ¢ = 0.025 s, (b)
t=0.05s, (c) t=0.075s,(d) t=0.1s,and () t =0.125s. . .. .. 92

7.1 Sketch of growth factor binding to receptors and HSPG and the for-
mation of various compounds on the surface of a capillary. The sym-
bols in the sketch are as follows: L=FGF-2, R=FGFR, P=HSPQG,
C= FGF-2-FGFR complex, G=FGF-2-HSPG complex, Co=FGF-2-
FGFR dimer, Go=FGF-2-HSPG dimer, T=FGF-2-FGFR-HSPG com-
plex, and To=FGF-2-FGFR-HSPG dimer. . . . ... ... ... ... 97
7.2 Finite volume notation of control volumes in axisymmetrical coordinates.102
7.3 'The reaction network for the base model. The same symbolic represen-
tation of the species as in Fig. 7.1 is used here. Only single signaling
HSPG is considered in this model. Single arrowheads indicate an irre-
versible reaction and double arrowhead indicate a reversible reaction.
Both FGFR and HSPG can mediated signaling through 75 [40]. . . . 104
7.4 Visualization of laminar flow in part of the artificial capillary within
x = 0 ~ 0.005 m. (a) Flood plot of velocity u. (b) Vector plot of

velocitieswand v. . . . . . . . ... L L 108
7.5 Comparison of velocity profile of fully-developed laminar flow in a cir-
cular pipe between numerical and exact solutions . . . ... .. ... 109
ix

www.manaraa.com



7.6 The dependency of numerical solution on mesh size, (a) at t = 5 min-

utes, (b) at ¢ = 10 minutes, (c) at ¢ = 20 minutes, (d) at ¢ = 40

minutes, and (e) at ¢ = 60 minutes, where triangles, solid line, and

circles represent numerical results of mesh size 1200 x 20, 1400 x 24,

and 1600 x 24 respectively. . . . . . ... 110
7.7 Visualization of ligand transport in the capillary at the condition of

4°C and inlet velocity u = 0.0000866 m/s, (a) at ¢ = 5 minutes, (b) at

t = 10 minutes, (c) at t = 20 minutes, (d) at ¢ = 40 minutes, and (e)

at t =60 minutes. . . . . . ... Lo 114
7.8 The dependency of species concentration at capillary wall on axial

axis (z) at ¢ = 5 minutes, (a) ligand [L]/[Lo], (b) FGFR, (c) HSPG,

(d) FGF-2-FGFR complex, (e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-

HSPG complex and its dimer, (g) FGF-2-HSPG complex and its dimer,

(h) summation of [P]+ [G] + [T'] + 2[G3] + 2[T3], and (i) summation of

[R]+ [C]+[T]+2[Co] +2[To]. . -« o v o oo 115
7.9 The dependency of species concentration at capillary wall on axial

axis (z) at ¢ = 10 minutes, (a) ligand [L]/[L¢], (b) FGFR, (¢) HSPG,

(d) FGF-2-FGFR complex, (e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-

HSPG complex and its dimer, (g) FGF-2-HSPG complex and its dimer,

(h) summation of [P] + [G] + [T] + 2[G2] + 2[T3], and (i) summation of

[R]+ [C]+[T]+2[Co] +2[To]. « « - o v o oo 116
7.10 The dependency of species concentration at capillary wall on axial

axis (z) at ¢t = 20 minutes, (a) ligand [L]|/[L¢], (b) FGFR, (c¢) HSPG,

(d) FGF-2-FGFR complex, (e¢) FGF-2-FGFR dimer, (f) FGF-2-FGFR-

HSPG complex and its dimer, (g) FGF-2-HSPG complex and its dimer,

(h) summation of [P] + [G] + [T] + 2[Gs] + 2[T], and (i) summation of

[R] 4+ [C]+[T]+2[Co] +2[To]. - - - v o o oo e 117
7.11 The dependency of species concentration at capillary wall on axial

axis (z) at ¢t = 40 minutes, (a) ligand [L]|/[L¢], (b) FGFR, (c¢) HSPG,

(d) FGF-2-FGFR complex, (e¢) FGF-2-FGFR dimer, (f) FGF-2-FGFR-

HSPG complex and its dimer, (g) FGF-2-HSPG complex and its dimer,

(h) summation of [P] + [G] + [T] + 2[G2] + 2[T3], and (i) summation of

[R] 4+ [C]+[T]+2[Co] +2[To]. - - - v o o oo e 118
7.12 The dependency of species concentration at capillary wall on axial

axis (x) at ¢ = 60 minutes, (a) ligand [L]/[Lo], (b) FGFR, (c) HSPG,

(d) FGF-2-FGFR complex, (e¢) FGF-2-FGFR dimer, (f) FGF-2-FGFR-

HSPG complex and its dimer, (g) FGF-2-HSPG complex and its dimer,

(h) summation of [P]+ [G] + [T'] + 2[G2] + 2[T3], and (i) summation of

[R]+ [Cl+[T]+2[Co) +2[To]. .« - o v o v oL 119
7.13 Visualization of ligand transport in the capillary at the condition of

37°C and inlet velocity v = 0.0000866 m/s, (a) at t = 5 minutes, (b)

at t = 10 minutes, (c) at ¢ = 20 minutes, (d) at ¢ = 40 minutes, and

(e) at t =60 minutes. . . . . . . ... 120

www.manaraa.com



7.14

7.15

7.16

717

7.18

7.19

7.20

The effect of internalization on species distribution at £ = 5 minutes,
(a) ligand [L]/[Lo], (b) FGFR, (c¢) HSPG, (d) FGF-2-FGFR complex,
(e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-HSPG complex, (g) FGF-
2-FGFR-HSPG dimer, (h) FGF-2-HSPG complex, (i) FGF-2-HSPG
dimer, (j) [P]+[G]+[T]+2[G2]+2[T3], and (k) [R]+[C]+[T]+2[C2]+2[T3].122
The effect of internalization on species distribution at ¢ = 10 minutes,
(a) ligand [L]/[Ly], (b) FGFR, (c) HSPG, (d) FGF-2-FGFR complex,
(e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-HSPG complex, (g) FGF-
2-FGFR-HSPG dimer, (h) FGF-2-HSPG complex, (i) FGF-2-HSPG
dimer, (j) [P]+[G]+[T)+2[G2]+2[T3] and (k) [R]+[C]+[T]+2[C2)+2[T3].123
The effect of internalization on species distribution at ¢ = 20 minutes,
(a) ligand [L]/[Ly], (b) FGFR, (c) HSPG, (d) FGF-2-FGFR complex,
(e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-HSPG complex, (g) FGF-
2-FGFR-HSPG dimer, (h) FGF-2-HSPG complex, (i) FGF-2-HSPG
dimer, (j) [P]+[G]+[T]+2[G2]+2[Tz], and (k) [R]+[C]+[T]+2[C]+2[13].124
The effect of internalization on species distribution at ¢ = 40 minutes,
(a) ligand [L]/[Ly], (b) FGFR, (c) HSPG, (d) FGF-2-FGFR complex,
(e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-HSPG complex, (g) FGF-
2-FGFR-HSPG dimer, (h) FGF-2-HSPG complex, (i) FGF-2-HSPG
dimer, (j) [P]+[G]+[T]+2][G2]+2[T5], and (k) [R]+[C|+[T]+2[Ca]+2[T5].125
The effect of internalization on species distribution at ¢ = 60 minutes,
(a) ligand [L]/[Ly], (b) FGFR, (c) HSPG, (d) FGF-2-FGFR complex,
(e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-HSPG complex, (g) FGF-
2-FGFR-HSPG dimer, (h) FGF-2-HSPG complex, (i) FGF-2-HSPG
dimer, (j) [P]+[G]+[T]+2[G2]+2[13], and (k) [R]+[C]+[T]+2[C2]+2[13].126
Visualization of ligand transport in the capillary at the condition of
37°C and inlet velocity u = 0.0001732 m/s, (a) at ¢ = 5 minutes, (b)
at t = 10 minutes, (c) at ¢ = 20 minutes, (d) at ¢t = 40 minutes, and
(e)at t =60 minutes. . . . . . . . ... 127
Visualization of ligand transport in the capillary at the condition of
37°C and inlet velocity v = 0.00003464 m/s, (a) at ¢ = 5 minutes, (b)
at t = 10 minutes, (c) at ¢ = 20 minutes, (d) at ¢ = 40 minutes, and
(e)at t =60 minutes. . . . . . . . ... 128

xi

www.manaraa.com



List of Files

1.1 dissertation.pdf . . . . .. .. ... oL xii

xii

www.manharaa.com




1 Introduction

The purpose of this chapter is to state the motivation of the proposed dissertation re-
search and give an introduction to Computer Aided Design and Engineering in areas
of fluid mechanics, heat transfer, chemical reaction, and molecular binding, which are
usually described by a set of partial differential equations (PDEs) and/or ordinary
differential equations (ODEs). With the development of high-speed digital comput-
ers, the modeling and simulation of complex phenomena such as multi-dimensional
combustion that couples fluid flow and chemical reaction is made possible in prac-
tice. For example, problems that now take a few seconds of CPU time in a modern
computer would have taken years to complete with computers available twenty years
ago [3]. An interesting phenomenon is that the growth of computer speed and that
of computer costs are not at the same rate, and computer speed has increased much
more rapidly than computer costs. The direct consequence of this trend is that the
cost of performing a given calculation has been reduced substantially. According to
an investigation on computation cost, the expense for a given task and algorithm has

been reduced by a factor of 10 every 8 years [17].

1.1 Motivation

Traditionally, the research on fluid mechanics and heat transfer depends heavily on
experimental and theoretical methods. The advantages of these two approaches are
that the experimental approach produces most realistic results and the theoretical
approach gives a clean solution in the formula form. However, both of them have
some disadvantages. For the experimental method, test equipments are required and
expensive in many cases, and the wind tunnel measurement is difficult and expensive
in operating. The theoretical approach is usually restricted to some simple geometry

and linear problems. The numerical method can overcome many of the drawbacks
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mentioned above, such as cutting the cost due to wind tunnel experiments, being ap-
plied to complicated nonlinear problems, and obtaining a transient solution, despite
the drawbacks of numerical errors, boundary condition specification, and needed com-
puter cost [3]. In some situations, such as studying the heat transfer in human skin,
it is not possible to conduct a direct experiment, numerical simulation with physical
properties from animals is the only choice.

One of the important topics this dissertation involves is numerical simulation of
laminar diffusion flame. Laminar diffusion flame itself is an important flame, and
it can also be used as a prototype to simulate more complicated turbulent reacting
flows. As it is known, combustion is the oldest technology of mankind, and it has
been used for more than one million years and will still be used as the most important
technology to provide energy service for the survival and advance of human being. At
present, about 90% of our worldwide energy support is provided by combustion [128].
Examples of the application of combustion include automotive industry, aerospace
industry, electrical power generation, and heating. Combustion is a very important
process which involves fluid flow, chemical reaction, energy transform, and radiation
heat transfer. A direct consequence of using fossil fuels is the formation of pollutant
during combustion. This can be witnessed by the global climate change, which has
attracted considerable attentions and will continue to be a central topic in the future.

It is really worthwhile studying this process in terms of importance and complexity.

1.2 Modeling Procedure

The procedures involved in modeling and simulation usually include four steps: set up
the mathematical model, rewrite the mathematical model such that it is suitable for
computer simulation, develop computer programs, and verify simulation results [109].
In terms of economy, the application of computers often achieves a very low cost per

calculation while a relatively high initial cost is required to develop the program. It
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should be recognized, however, that once a computer program has been generated,
the initial cost for reuse in subsequent projects is usually negligible or marginal.
Our research focuses on the modeling and simulation of physical and biological
processes in nature, which are governed by partial differential equations (PDEs). So
in our case, the first step in modeling procedure is to derive a set of PDEs or use the
existing PDEs as the mathematical model.
A general second-order partial differential equation in standard form in a 2D space

can be written as [3]
Uy + by + CUyy + duy + euy + fu = g(z,y) (1.1)

where a, b, ¢, d, e, and f are functions of (z,y). Eq. (1.1) can be classified as hy-
perbolic, parabolic, and elliptic based on the values of a, b, and ¢. The PDE is
hyperbolic if b2 — 4ac > 0, parabolic if b> — 4ac = 0, and elliptic if > — 4ac < 0. El-
liptic PDEs govern boundary value problems, or equilibrium problems, which include
steady-state temperature distributions, incompressible inviscid flow, and equilibrium
stress distributions in solids. Hyperbolic or parabolic PDEs govern initial value or
initial boundary value problems, which are frequently called marching or propagation
problems.

In numerical simulation, systems of equations are frequently encountered, which
can also be classified as hyperbolic, elliptic, parabolic, or mixed. A system is mixed
if the roots of the characteristic equations of the coefficient matrix include both real
and complex parts. Detailed information of the classification of systems of equations
can be found in [3].

The mathematical model of PDEs is not suitable for direct computer simulation.
The PDEs in the continuous problem domain must be discretized so that the de-
pendent variables are considered to exist only at discrete points. Frequently used
discretization techniques in numerical simulation include finite difference, finite vol-

umeand.finite,element methods. Finite difference method has the property of easy
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to implement by discretizing the differential equations directly, easy to obtain higher
order accuracy by using higher order difference, and the coefficient matrix of the linear
system obtained from implicit discretization is easy to solve, but it is difficult to apply
to irregularly shaped domains. For both finite volume and finite element methods,
the differential equations have to be written in an integral form before discretization.
The major advantage of finite element and finite volume methods is their easy ap-
plication in irregular domains and the use of fully unstructured grids composed of
triangles and/or quadrilaterals [10]. It is worth noticing that finite volume method
has a unique property of inherent flux conservation, which is the desired feature we
want to pursue in numerical simulation of fluid flow and heat transfer. However, both
finite volume and finite element methods have the drawback of increased computa-
tion cost in implicit discretization due to denser coefficient matrix. The selection of a
discretization method depends on actual applications. In the case of simple geometry,
finite difference method may be used for simplicity. In the case of complex geometry

with irregular boundaries, finite volume or finite element may be applied.

1.3 Solution Methods

Numerical schemes which are employed to convert governing PDEs to discrete alge-
braic expressions are very important for the solution of equations in terms of accuracy,
stability, and efficiency, and are usually problem dependent. Hyperbolic equations
can be solved very efficiently using explicit methods, in which only one unknown
appears in each equation. High resolution schemes have been developed using ex-
plicit discretization and flux limiters [116], such as the second order total variation
diminishing TVD scheme [90], second order MUSCL type TVD scheme [122], third
order piecewise parabolic method (PPM) [22], Runge-Kutta methods, and higher or-
der weighted essentially non-oscillatory (WENO) scheme [106]. For these explicit

schemes, there exists a common shortcoming: they are not unconditionally stable.
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The stability of explicit numerical schemes is confined by CFL condition.

For problems governed by elliptic PDEs, such as steady-state heat conduction
equation, simultaneous equations have to be solved, which involves inversion of the
coefficient matrix. Such matrix is usually sparse, and its detailed structure depends
on the dimensions of the problem and the discretization strategy. For parabolic equa-
tions, such as transient heat conduction equation, simple explicit method is highly
dissipative. The commonly used method is the implicit treatment of the temporal
terms, and again, simultaneous algebraic equations have to be solved.

When doing simulations in one space dimension, the coefficient matrix of the dis-
crete algebraic equations is frequently tridiagonal or block tridiagonal. A very efficient
numerical algorithm exists for tridiagonal matrices, the Thomas algorithm, which runs
in linear time. For multidimensional applications, however, the coefficient matrix is
very difficult to invert directly. Due to the very attractive feature of the Thomas al-
gorithm, a multi-dimensional problem is frequently solved with multi-steps such that
a tridiagonal matrix is formed for each step. Algorithms related to this technique in-
clude alternating-direction-implicit (ADI) method and fractional-step methods. For
a two-dimensional heat equation [3],

ou 0?u  0%u
o (a— i w) |

the ADI method given by Peaceman and Rachford can be written as

n+1/2 n n+1/2 n+1/2 n+1/2 n n n
Upj oy (U = 22U T Uy Ui — 22U U
At/2 (Ax)? (Ay)?
and
n+1 n+1/2 n+1/2 n+1/2 n+1/2 n+1 n+1 n+1
Uig — Uiy (U =20 T ey U — 2ug U
At/2 (Az)? (Ay)? ’

and the splitting of the fractional-step gives the following expression

+1/2 +1/2 +1/2 +1/2
upy = _ . wirny = 20
At/2 (Ax)?
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and

n+1 n+1/2 n+1 n+1 n+1
Upp = Uiy Uy = 2U U
At/2 (Ay)?

The splitting techniques of ADI and fractional-step do not work well in situations that
are highly nonlinear, such as the strongly coupled chemical reacting flow. As reported
by Xu [132], difficulties had been encountered in obtaining a converged solution of
the pressure and pressure correction equations when using the splitting method for
simulating two-dimensional laminar diffusion flame. Instead, the iteration converged
smoothly when a direct sparse matrix solver was employed. Current work focuses on
the application of newly developed Krylov subspace iterative method to the simulation

of various physical and biological phenomena that are modeled by PDEs.

Copyright © Wensheng Shen 2007
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2 TIterative Methods and Effective Preconditioners

The purpose of this chapter is to give a literature review of methods solving linear
system of equations, including direct methods, stationary iterative methods, Krylov
subspace based iterative method, multigrid method, and finally efficient precondition-

ers.

2.1 Direct Methods

Gaussian Elimination is the basic method for solving linear system of algebraic

equations Az = b, where A is a square matrix and has the following form:

aixy Qi -+ Qip
A= ag1 Q22 ++° QAagpn
Gp1 Qp2 - - Qpp

The algorithm of Gaussian elimination consists of two steps, forward elimination
and back substitution. After forward elimination, the upper triangular system of
equations

Az =¥

is obtained, which can easily be solved, where

! ! !
Gy G = Oy
! !
Al — 0 ayp - ay
!
0 0 --- @

nn

For a linear system of n equations, the number of arithmetic operations required by
Gaussian elimination is in the order of O(n?), due to the forward elimination step.

LU Factorization is a variant of Gaussian elimination. The original matrix A
can be factorized into the product of two matrices A = LU, where L is a lower
triangular matrix, and U is an upper triangular matrix. The LU factorization can
easily be constructed from modifying Gaussian elimination with the upper triangular

matrix. U being the.one produced by the forward step of Gaussian elimination and
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the elements of the lower triangular matrix L being the multiplicative factors (a;;/a;;)
used in the elimination process [35]. The computational cost of the LU factorization
is equivalent to that of Gaussian elimination. The LU factorization has the advantage
over Gaussian elimination in that the inverse of the lower triangular matrix L is still
lower triangular and the factorization can be done without knowing the vector b. This
is useful when a series of linear systems with the same coefficient matrix but multiple
right-hand side vectors have to be solved.

Tridiagonal Matrix Algorithm and Cyclic Reduction are efficient methods
for solving tridiagonal systems. Tridiagonal Matrix Algorithm (TDMA) or Thomas
algorithm is a special case of Gaussian elimination, in which only one element needs
to be eliminated from each row during the forward elimination step. Both the forward
elimination and back-substitution steps run in linear time, proportional to n, provided
pivoting is not needed.

The cyclic reduction method is for a specialized tridiagonal system, in which all of
the elements on each diagonal are identical. This method recursively reduce the size
of the linear system by a half on each recursive call, until only one equation is left.
The last equation is solved directly, and the values of the remaining variables can
then be obtained by a variant of back substitution. Assume the number of unknowns

are a power of two, the cost of this method is proportional to log, n.

2.2 Stationary Iterative Methods

There are ways to convert

Ax =10

to a linear fixed-point iteration. Methods such as Jacobi, Gauss-Seidel, and successive

overrelaxation (SOR) iteration are based on splitting of A into the form [55]

A:A1+A2
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where A; is a nonsingular matrix constructed so that equations with A; as the coef-

ficient matrix are easy to solve. Then Ax = b is converted to the fixed point problem
Jacobian Iteration The Jacobi iteration uses the splitting in the following way
Al == _D,
and
AQ = L + U,
where D is the diagonal of A and L and U are the lower and upper triangular parts.
This leads to the iteration matrix

My = —D YL +U).

Let (zr); denote the ith component of the kth iterate we can express Jacobi iteration

concretely as
(Trs1)i = az* (bi = Djriaij(wn);) -
Note that A; is diagonal and hence trivial to invert.

Gauss-Seidel iteration Gauss-Seidel iteration overwrites the approximate solution

with the new value as soon as it is computed. This results in the iteration
(@rr1)i = ag;' (b — Sjciaij(Tr1); — Sj»iaii(zr);)

the splitting is
Al :D+L,A2:U,

and the iteration matrix

Mgs = —(D + L)™'U,

Note that A; is lower triangular, and hence A;'y is easy to compute for vector y.

e Jacobi iteration, the Gauss-Seidel iteration depends on the
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ordering of the unknowns. Backward Gauss-Seidel begins the update of z with the

nth coordinate rather than the first, resulting in the splitting
A1 :D+U,A2:L,
and iteration matrix
Mpgs = —(D+U) L.

A symmetric Gauss-Seidel iteration is a forward Gauss-Seidel iteration followed

by a backward Gauss-Seidel iteration. This leads to the iteration matrix
Msgs = MpgsMags = (D +U) 'L(D + L)'U.
If A is symmetric then U = L. In that event
Msgs = (D+U) 'L(D+ L)y *U=(D+ L") 'L(D+ L) 'L".

From the point of view of preconditioning, one wants to write the stationary
method as a preconditioned Richardson iteration. That means that one wants to find
B such that M = I — BA and then use B as an approximate inverse. For the Jacobi
iteration,

BJac = Dil.
For symmetric Gauss-Seidel
Bsgs = (D+ LY)™'D(D + L)™*.

Successive Overrelaxation (SOR) The successive overrelaxation iteration modi-
fies Gauss-Seidel by adding a relaxation parameter w to construct an iteration with

the iteration matrix
Msor = (D +wL)™'((1 — w)D — wU).

The performance can be dramatically improved with a good choice of w, but still not
competitive with the Krylov methods. A further disadvantage of SOR is that the

choice-of w-is-often-difficult to make.

10
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Symmetric Successive Overrelaxation (SSOR) If the coefficient matrix A is
symmetric, the SSOR method can produce an iteration matrix similar to a symmetric
matrix. SSOR include a forward SOR sweep and a backward SOR sweep. This
method is usually used an a preconditioner to other iterative methods for symmetric

matrices. The iteration matrix of SSOR is
Mssor = (D +wU) (1 —w)D — wL)(D 4+ wL) (1 — w)D — wU).

Incomplete LU Decomposition: Stone’s Method The LU factorization can be
written as M = LU = A+ N, where L and U are both sparse matrices and the
magnitude of the elements in N is small [35]. The incomplete LU factorization (ILU)
is a LU factorization such that for every zero element of the original matrix A, the
corresponding element of L of U is set to zero. This is not an exact factorization of
A, the product of the two factors L and U, however, can be used as the precondi-
tioning matrix of an iterative method. Using Laplace’s equation as an example, the
discretization of the two-dimensional one on a five point stencil may be written in

algebraic format as
AP.ITILJ + AS.’L'Z =+ AW{IJ% + ANSL'R; + AE.T% = bp.

The resulting coefficient matrix A is five-diagonal. The product of the lower and
upper triangular matrices L and U generated by the standard ILU factorization of A,
M is seven-diagonal, which has two more non-zero diagonals, corresponding to nodes
NW and SE or NE and SW, depending on the ordering of the nodes in the vector.
To make the factorization unique, every element on the main diagonal of U is set to

unity. Let us consider the following vector
(Mz)p = Mpxp + Mszs + Myxy + Mpzp + Myzw + Mywanw + MspTse.

Each term in the equation corresponds to a diagonal of M = LU. Since N = M — A,

the-matrix Namust-contain diagonals NW and SE, and the following condition has

11
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to be satisfied
Npzp + Nyxny + Nsxs + Ngxg + Nwzw + Mywaxnw + Msgrsy =~ 0
Stone [114] proposed to use the following approximations,
Tnw ~ a(xw + Ty — xp)

and

Tsg ~ a(xs + g — xp),

where the stability requirement is a < 1.

The LU factorization due to Stone’s suggestion can be expressed as [35]:

Algorithm 1 Stone-ILU(A, L, U)

LS = As/(l + O,/UE)

Lp=Ap+ a(LwUy + LsUg) — LwUg — LsUy
UN = (AN - aLwUN)/Lp

UE = (AE - CMLsUE)/Lp

The algorithm solving the linear system Az = b using Stone’s ILU method is listed
in Algorithm 2, where € is the convergence criteria, r the residual, k,,,, the maximum

number of iterations, and ¢ the correction.

Algorithm 2 Stone(A, b, €, L, U)
1: Initialization: r =b— Az, k=1
2: while ||7||2 > €||Initial Residual||y and k& < kmax do

33 Y=(r—-LsY —LyY)/Lp
4: 60=Y —Upno6—Ugd

5 xT=x+0

6: k=k+1

7: end while

2.3 Krylov Subspace Based Iterative Methods

Conjugate Gradient (CG) method is intended to solve a symmetric positive def-

inite (SPD) matrixRecall that a matrix A is symmetric if A = AT and positive

12
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definite if its eigenvalues are all positive, i.e., 7 Az > 0 for all x # 0. For a positive
definite matrix, solving the system of equations Az = b is equivalent to finding the
minimum of [35]
1 TR n
(x) = ixTA:c —zTh = 3 Z Z QijTiT; — Z z;b;
j=1 i=1 i=1

with respect to all the x;. Note that if ¢(z) is the minimal value in R™ then
Vo(z) =Az—b=0,

and hence T = x. The conjugate gradient method is based on a remarkable discovery
that it is possible to minimize a function with respect to several directions simulta-
neously while searching in one direction at a time. This is made possible by a clever
choice of the directions. Using two directions as an example, letting £ minimize ¢ in
the plane of p! — p?, we can write z as = 2° + a'p! + o?p?. This problem can be
reduced to the problem of minimizing with respect to p' and p? individually if the
two directions are conjugate. That is p! Ap? = 0.
The rate of convergence of CG depends on the condition number x(A) with

K/(A) — )\maz’

Amin

where A,,.; and )\, are the largest and smallest eigenvalues of the matrix A. In
numerical simulation of heat transfer and fluid flow, the condition numbers of resulting
matrices are approximately the square of the maximum number of grid points in any
direction [55]. To reduce the condition number and improve the performance of
the iteration, the initial system Ax = b can be replaced by another SPD system
with the same solution. The new system may be written as M Az = Mb, and M
is a nonsingular matrix. Since this may destroy the symmetry of matrix A, the

preconditioner may take the following form:
CrAC 'y = C™b,

13
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where the conjugate gradient method is applied to the matrix C~'AC~!, and the
unknown vector x can be found as z = C~'y. One of the preconditioned CG algo-

rithms is presented in Algorithm 3 [55]. In Algorithm 3, only five vectors need to

Algorithm 3 PCG(z, b, A, M, €, kmax)
1: Initialization: r = b — Az, py = ||r||2, k = 1
2: while ,/pr_1 > €||b||2 and k£ < kmaz do

3: Mz=r

4: Sk—1 =2Tr

5. ifk=1then S =0and p=zelse f =5k 1/Sk_2, 0= 20p
6: w= Ap

. a=s1/pTw

8& zT=zxz+ap

9: rT=7r—Qquw

10 pp=r"

11: k=k+1

12: end while

be stored, x, w, p, r, and z. This algorithm involves solving linear system Mz = r,
where M = C~! and C is the preconditioning matrix. In the algorithm,C~'A4 is in
fact never actually constructed [35]. It is required that M must be easy to invert,
and is often chosen as the incomplete Cholesky factorization of A.

Bi-Conjugate Gradient Stabilized (BiCGSTAB) method was proposed by van
der Vorst [123] with the purpose of extending the CG algorithm to non-symmetric
matrices. The BICGSTAB algorithm is summarized in [55]. In Algorithm 4, seven
vectors need to be stored, z, b, r, 7o, p, v, and t. Four matrix-vector products are
required in each iteration of the algorithm. The cost in storage and in floating point
operations per iteration remains bounded for the entire iteration.

General Minimum Residual (GMRES) method is a projection method that
minimizes the residual norm over all vectors in x¢ + i, where z; is the initial value
and Ky, is the k-th Krylov subspace with v, = ro/||rol|2 [94]. The k-th Krylov subspace
is

K1 (A,r9) = span(ro, Arg, - -+ , AF71rp)

14
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Algorithm 4 BiCGSTAB(z, b, A, €, kmax)
1: Initialization: r =b— Az, fo=7r, pp=a=wo =1, v=p=0, k=0, p, =747
2: while ||7||2 > €||b]|2 and k£ < kmax do
3: k=k+1

B = (pr/pe-1)(at/w)

p=r+pB(p—wv)

v=Ap

a = p/(fgv)

s=r—avandt=As

w=1t"s/|t|l; and pp1 = —wigt

10 z=z+ap+ws

11: r=s—wt

12: end while

where rg = b — Axy. This method seeks an approximate solution x;, from the affine

subspace z¢ + Ky of dimension k£ by imposing the Galerkin condition
b— Az, LK.
The kth GMRES iteration is equivalent to the least squares problem
minimizeye 11, ||0 — Azl

One implementation of GMRES with the Householder orthogonalization can be writ-

ten as pseudocode in Algorithm 5 [55].

2.4 Multigrid Methods

The rate of convergence of an iterative method depends on the eigenvalues of the
iteration matrix. The ratio of the largest and smallest eigenvalues determines how
rapidly the solution is reached. The eigenvector associated with this eigenvalue de-
termines the spatial distribution of the convergence error. The largest eigenvalues,
however, are determined by the type of equations as well as the method used to solve
the equations. Using Laplace’s equation as an example, the Jacobian method has
two largest eigenvalues that are real and of opposite sign, one representing a smooth

function.and. the other a rapidly oscillating function. The convergence of Jacobian

15
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Algorithm 5 GMRES(z, b, A, €, kmax)
1: Initialization: r = b — Az, vi = r/||rlla, p = |72, B = p, K = 0, g =
p(l, 0’ .. ,O)T c kaazv+1
2: while p > €|b||2 and k£ < kmax do
33 k=k+1
4: wpy = Avg
5 forj=1,---,kdo
6
7
8
9

hjk: = v,{ﬂvj
Uky1 = Vke1 — HjVj
end for
Prri ke = vkl
10:  Test for loss of orthogonality and reorthogonalize if necessary.
1: vppr = Vgt /[|vksallo
12: if £ > 1 apply Qr_1 to the kth column of H then

13: v= \/h,%’k+hk+1,k2

14: ¢k = P/, Sk = —hks16/V, Poege = Cohig — SkPks1k, and by, =0
15: 9 = Gyl(ck, sk)g

16: end if

17: end while

18: p = [(g)k+1]

19: set Tig = hi,]’ for 1 S Z,] S k

20: set (w); = (g);, for 1 <i <k

21: solve the upper triangular system Ry* = w
22: xp = Xo + kak

16
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method is slow since the convergence error for the Jacobian method is a mixture
of very smooth and very rough components. The Gauss-Seidel method has a single
largest eigenvalue that is real and positive with an eigenvector that makes the con-
vergence error a smooth function of the spatial coordinates. The SOR method has a
number of largest eigenvalues with optimum over-relaxation factor lie on a circle in
the complex plane, so the convergence error is very complicated [35].

If the error is smooth, the update can be computed on a coarser grid to save
computational cost. For example, on a grid twice as coarse as the original one in
two dimensions, the cost needed for iterations is only 1/4 that of the original grid.
Furthermore, iterative methods converge much faster on coarser grids. So the total
time can be saved substantially by using coarse grids. In order to do this, two basic
steps have to be performed: smoothing the residual from the fine grid to the coarse
one and interpolating the correction from the coarse grid to the fine one. Linear
interpolation is the simplest interpolation from coarse to find grids.

The most important property of the multigrid method is that the number of it-
erations on the finest grid required to reach a given level of convergence is roughly
independent of the number of grid nodes. The iterative method on which the multigrid
method is based must be a good smoother. Gauss-Seidel, incomplete LU decompo-
sition, and conjugate gradient method preconditioned with incomplete Cholesky can
be used as such smoothers.

A two-level multigrid method may include the following steps [35]:

2.5 Preconditioners

A preconditioner to a given linear system can be any form of explicit or implicit
modifications of the original system that makes it “easier” to solve by an iterative
method [94]. For the original system Az = b, a preconditioned system M~'Ax =

M~'b can be formed, where the preconditioning matrix M ~! should be inexpensive
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Algorithm 6 Multi-grid(z, b, A, €)

1: Initialization: r = b — Az for 2y = 0

2: while r > e do

3:  Solve Az = b on the fine grid using initial guess xq =

4 Calculate the residual r = b — Ax

5. reduce A and 7 to a coarser grid
6:  Solve the correction equation Ae = r iteratively on the coarse grid
7:  Interpolate the correction on the fine grid
8
9

:  Update the solution on the fine grid xo = o + e
: end while

to apply to a matrix-vector product. The construction of M~! can be performed in
different ways depending on applications.

Jacobi, GS, SOR, and SSOR Preconditioners A fixed-point iteration for the
linear system Ax = b has the form z;, = M !Nz, + M 'b = Gz), + f [94], where
M and N are the splitting of A, A = M — N, f = M~'b, and G = M~!N =
I — M 'A. For Jacobian iteration, the preconditioning matrix is simply M = D,
where D is the diagonal of A. For Gauss-Seidel iteration, the preconditioning matrix
is M = (D + E) for forward sweep and M = D + F for backward sweep, where E
and F' are the strict lower part and upper part of A respectively. For successive over
relaxation method, the preconditioning matrix is in the form of M = (D + wFE) or
M = (D+wF). The preconditioner matrices for the symmetric Gauss-Seidel iteration
(SGS) and the symmetric SOR (SSOR) can be written as M = (D + E)D (D + F)
and M = (D + wE)D™ (D + wF) respectively. It can be seen that the SGS and
SSOR preconditioning matrix is of the form M = LU, where L and U have the same
pattern as the L-part and U-part of A.

ILU(0) Preconditioner is the incomplete LU factorization of A with no fill-in, i.e.,
the zero pattern of matrix M = LU is precisely the same as that of matrix A. As
described before, for a 2D Laplace’s equation, the coefficient matrix A is five-diagonal,
but the matrix M is seven-diagonal. The entries in these extra diagonals are called

fill-in elements. The ILU(0) factorization can be stated as: any pairs of matrices L
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(unit lower triangular) and U (upper triangular) such that the elements of A — LU
are zero in locations where the elements of A are not zero. For any arbitrary matrix
A, let NZ(A) denote any nonzero elements in A, i.e., the set of pairs (7, j) such that
a;; # 0, where 1 < 4, j < n, the algorithm of ILU(0) factorization can be written as

[94]:

Algorithm 7 ILU(0)
1: fori=2,--- ,ndo

22 fork=1---,i—1do

3: if (ik) € NZ(A) then

4: Compute a;r = air/agk
5: for j=k+1,---,ndo
6: if (ij) € NZ(A) then
7: Compute a;; = a;; — Qixax;
8: end if

9: end for

10: end if

11:  end for

12: end for

ILU(k) Preconditioner allows some fill-ins to increase the accuracy and improve
the rate of convergence, where k is the level of fill. The product of L and U ob-
tained from standard ILU factorization contains two extra diagonals. Assume that
the original matrix A have the same pattern as M, where M = LU, with zero in the
fill-in positions, the factors of L; and U; from ILU(1) factorization can be obtained
by performing an ILU(0) factorization on the pretended matrix. The product of L,
and U; has two additional diagonals in the lower and upper parts.

In ILU(k), all fill-in elements with level of fill less than & are kept. The higher the
level, the smaller the elements. The initial level of fill of an element a;; of a sparse
matrix A is defined by lev;; = 0 if a;; # 0 or ¢ = j, and lev;; = oo otherwise. During
the construction, the level of fill is updated by lev;; = min(lev;j, levy, + levg; + 1).
Let a; indicates the ith row of A, The algorithm for ILU(k) factorization can be

written as follows [94].
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Algorithm 8 ILU(k)
1: Initialization
2: for a;; # 0 do
3. lev(a;;) =0

4: end for

5. fori=2,--- ,ndo

6: fork=1---,i—1do

7: if lev(ay) < k then

8: Compute a;x = air/agk

9: Compute a;, = Gy — QigOpy

10: levi; = min(levy;, levy + levg; + 1)
11: end if

12: end for
13:  for each q;; in row 7 do

14: if lev(a;j) > k then
15: Qij = 0

16: end if

17:  end for

18: end for

ILUT Preconditioner has two dropping parameters p and 7, where p is the param-
eter that helps control memory usage, while 7 is used to reduce computational cost.
There are two dropping steps in the ILUT algorithm. The first step is to drop any
element wy, such that wy < 7;, where w is a full length working row and wy, is the k-th
entry of this row, 7; is relative tolerance obtained by multiplying 7 by the 2-norm of
the i-th row. The second step is to drop again any element in the row that is less
than the relative tolerance 7;, and then keep only the p largest elements in the L part
and p largest elements in the U part of the row in addition to the diagonal element.

An algorithm of ILUT factorization can be written as [94]

Copyright ©) Wensheng Shen 2007
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Algorithm 9 ILUT
1: Initialization
2: fori:=1,---,ndo
3: W = Qs

4 fork=1,---,i—1do
5. if wg # 0 then

6: Wy = wk/akk

7 if wy, < 7||wl|2 then
8: w =10

9: end if

10: if wy # 0 then

11: W =W — WiUkx

12: end if

13: end if

14: end for

15:  for each element in row ¢ do

16: Apply dropping rule to that element

17: Keep p largest elements in the L and U parts
18: end for

19: forj=1,---,i—1do

20: lij = wy

21: end for

22: forj=1i,---,ndo
23: Ujj = Wj

24: end for

25: w=20

26: end for
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3 Bioheat Transfer and Biomechanics in Soft Tissue

3.1 Introduction

Diagnosis, surgery, and prothesis are common medical procedures visible to us, but
the biomechanics associated with them may not be as well known to us as they
should be [101]. It would be much better if we could understand the mechanics in
living tissues before a medical procedure is applied, as we can do in engineering area
by solving constitutive equations. One of the major difficulties in biomechanics is
to determine the mechanical properties of materials and tissues under investigation
[41]. Therefore, numerical modeling plays an important role in biomechanics by either
solving existing or assisting in determining unknown constitutive equations [101].

Heat transfer is a very fundamental and important process in living things, es-
pecially in human bodies, in order to maintain an almost constant temperature. In
fact, interesting results related to bioheat transfer have been obtained in the past sev-
eral decades, such as Pennes bioheat transfer equation [85] and other microstructure
bioheat transfer models [129, 50, 18].

The modeling of heat related phenomena such as bioheat transfer and heat-
induced stress is useful for the development of biological and biomedical technologies,
such as thermotherapy and design of heating or cooling garments. A recent trend in
bioheat transfer is the application of heat therapy on tumors due to the fact that heat
helps the body treat cancers. Such examples of heat therapy are, to just list a few,
the development of a model-predictive controller (MPC) of the thermal dose in hyper-
thermia cancer treatments [6], the use of mammary gland tumor for determining the
performance parameters of a microwave radiometer [61], the reduction of large-scale,
nonlinear ordinary differential equations due to nonlinear models of electromagnetic
phased-array hyperthermia [58], three-dimensional finite-element analyses for radio-

frequency hepatic tumor ablation [121], and so on. However, there is little study on
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the thermal mechanical interaction at high temperature even though it is related to
the thermal damage of tissue such as skin wrinkle and tissue shrinkage [101].

In this work, a thermomechanical model is proposed to investigate the thermome-
chanical interaction of biological bodies subjected to high temperature. The objective
of this research is to obtain some quantitative descriptions of the thermomechanical
behavior of soft tissue according to the relationship between heat transfer and heat-
induced stress, and eventually to apply this useful information in diagnosis, surgery,
prothesis, and other medical interventions. Since the mechanical behavior may be
coupled with electrical and biochemical processes, the analysis related to tissue is
much more difficult than traditional structural mechanics. As a rudimentary step of

the research, some assumptions are made to simplify the analysis [101]:

(1) Only mechanical response is considered, electrical and biochemical responses

are not included.

(2) The tissue is isotropic, and the thermal and mechanical responses can be uni-

formly defined.
(3) Possible mass transfer such as transport of moisture is ignored.

A three-dimensional numerical model is developed to predict the time dependent
temperature distribution in biological tissues and the related deformation. In this
work, a 19 point finite difference scheme is employed to discretize the displacement
equation, while the heat equation is discretized using a 7 point central difference
scheme based on the proposed model. We use an iterative method to solve the resul-
tant linear systems. Simulation results are obtained which demonstrate the thermo-

mechanical interactions of soft tissue.
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3.2 Constitutive Equations

3.2.1 Heat transfer process

The heat transfer in soft tissue during the thermal exposure to high temperature can
be described using Pennes bioheat equation, which is based on the classical Fourier
law of heat conduction [85]. The Pennes model is used to address the heat transfer
in living tissues. The model is based on the assumption of the energy exchange be-
tween the blood vessels and the surrounding tissues. Even though there may exist
some differences in describing bioheat transfer in regimes, where vascular countercur-
rent heat exchange can possibly skew heat flux and temperature information, Pennes
model may provide suitable temperature distributions in whole body, organ, and tu-
mor analysis under study [30]. According to Pennes model, the total energy exchange
by the flowing blood is proportional to the volumetric heat flow and the tempera-
ture difference between the blood and the tissue. The three dimensional expression
of Pennes bioheat equation in a media with uniform material properties is given by

[101]

oT o0*T o0*T o0*T
—_— = Ta - T m T IR at I 31
pCat k8x2+k8y2+k822+wbcb( ) + @m + Qr(z,y, 2, 1) (3.1)

where T is temperature °C, p the tissue density kg/m3, C the tissue specific heat
J/(kg°C), k the tissue thermal conductivity W/(m°C), w, the blood perfusion rate
kg/(m3s), Cy the blood specific heat, T, the arterial temperature, @,, the metabolic
heat generation rate W/m?, and @, the regional heat sources W/m?. The actual

values of these physical properties are shown in Table 3.1 [101].

Properties Value  Properties Value
Arterial temperature T, (°C) 37 Shear modulus G (Pa) 3.0 x 10°
Thermal conductivity k& (W/(mK)) 0.5 Poisson’s ratio for drained state v 0.25
Density p (kg/m?) 1000  Poisson’s ratio for undrained state vy, 0.31
Specific heat C (J/(kgK)) 4000  Thermal expansion coefficient a (K~1) 1.0 x 10—4
Blood perfusion rate wy (kg/(m?s)) 0.5 Metabolic heat generation rate Q., (W/m?3) 33800

Table 3.1: Thermal physical properties used in this computation.
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In the case of bioheat transfer such as burn injury, the computational domain
may be selected as a rectangular box as indicated in Fig. 3.1. The boundary condi-
tions with respect to Eq. (3.1) corresponding to the computational domain shown in
Fig. 3.1, where the space in the z direction starts from the body core (z = 0) and

ends at the skin surface (z = H), can be described as [101]:

(1) In the z direction, given temperature boundary condition is applied at the body
core, i.e., T' =T, at x = 0; convective boundary condition is used at the skin
surface, —k2L = h;(T — Ty) at z = H, which is the normal case that the skin

surface is subjected to.

(2) In the y direction, symmetric boundary conditions are employed on both the

starting and ending edges, i.e., _kg_:; =0aty=0; —k‘?)—g =0aty=0L.

(3) In the z direction, again symmetric boundary conditions are enforced, i.e.,

—kg—f=0atz=0; —k%—szatz=W.

The specification of boundary conditions (2) and (3) can be justified as that the
heating source is assumed to be located around the center in the y — z plane at
certain z position, for example, z = h, while the four borders parallel to the x axis in
the computational domain are far away from the heating sources, hence symmetric
boundary conditions can be used. The actual dimensions of the computational domain

and locations of the heating sources will be given later.
3.2.2 Stress, strain, and displacement evolution

One of the destructive mechanisms for thermal damage of soft tissue is thermal in-
duced high mechanical stress. To study the thermal induced deformation in soft tissue
at high temperature, the thermoporoelasticity model is used in which stress, strain,
pressure and temperature are related. The constitutive relation describing the elastic

deformation of the soft tissue may be expressed by the modified Duhamel-Numann
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‘ L

Figure 3.1: An illustration of the computational domain of a soft tissue.

equation for porous media as [59]

3(vy —v) pdis — 2Ga(1+v) ATS;,
1+v,)(1—2v) 1—2v

v
0ij = QG(&'U -+ 71 — 2V€kk(5ij) — B( (32)

where €y, = Ouy/0x1 + Oug/0xy + Ouz/Oz3, 0;; and €;; are the second order total
stress and average strain tensors (i, j = 1,2, 3) respectively, p the fluid pressure inside
the vasculature, and AT the temperature difference. Here, the temperature difference
means the difference between the actual temperature and the reference temperature.
In the case of human soft tissue, the reference temperature may be taken as 37 °C.
The temperature for the tissue and the fluid in capillary beds is considered the same
due to the fact that local heat exchange between the components may be rapid enough
in comparison with global heat transfer and fluid flow. Other symbols in Eq. (5.1)
are listed in Table 3.2. If the pressure term is not included, Eq. (5.1) is reduced to
the stress equation in thermoelasticity to calculate thermal stresses [42].

Treat the tissue as the thermoporoelastic media, the equilibrium equation is [101]

3(vy —v) 2Ga(l+v)
i) — Pi—
1-2v B(1+v,)(1 —2v) 1-2v

G(uij + AT; =0, (3.3)

where u; is an average displacement vector of the porous matrix and is related to the

strain tensor by the equation [101]
ey = (uij +ujq) /2. (3.4)

26

—

www.manharaa.com




Symbol Meaning Symbol Meaning

€Lk first partial derivative G shear modulus

Oij 2nd order total stress tensor v Poisson’s ratio for drained state
Eij 2nd order average strain tensor vy Poisson’s ratio for undrained state
P fluid pressure inside the vasculature B Skempton’s constant

AT temperature difference e thermal expansion coefficient

0sj Kronecker delta

Table 3.2: Nomenclature for symbols used in Eq. (5.1).

The diffusion equation governing the fluid pressure changes in the tissue is

p _

at C'p,jj, (35)

where
O 2kGB*(1 +1v,)*(1 —v)
- 91 — vp)(vy — v)

Egs. (3.1), (5.1), (5.3), and (3.5) constitute the basic equations to describe the ther-

(3.6)

momechanical behavior of the soft tissues at high temperature, which is relative to
the normal body temperature. In soft tissue, a temperature above 44 °C may be con-
sidered high, since that may cause burn injury [46]. If the soft tissue is treated as an
isotropic elastic medium, the thermal deformation of the soft tissue can be described

by thermoelasticity and Eq. (5.3) becomes [96]

1 2Ga(l+v)

Gluigy + 75 Wigi) = —1 5,

Thus the model is simplified to a quasi-steady state thermoelasticity problem. To-
gether with boundary conditions, the response of biological bodies to high tempera-
ture and the corresponding deformation and stress and strain variations can be deter-
mined, from which the location of the thermomechanical damage due to temperature
and stresses can be revealed. This will provide us with the necessary information on
the approaches to protecting biological bodies at high temperature [101].

It needs to be made clear that after the finite difference discretization of Eq. (3.7),

which.will beintreduced in the next section, the term AT goes to the right-hand side
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and becomes a source term. The material properties and parameter related to the

above equations are summarized in Table 3.1.

3.3 Numerical Techniques

3.3.1 Finite difference discretization

The thermomechanical interactions due to high temperature can be found by solving
Egs. (3.1) and (3.7). It is clear that in the proposed model, Egs. (3.1) and (3.7)
are not coupled. The strategy is to solve temperature from Eq. (3.1) first, then solve
displacement from Eq. (3.7). Eq. (3.1) is time-dependent, and its solution has already
been obtained in our previous work [54] using a Crank-Nicolson scheme based on the
standard 7 point central difference discretization. In this chapter, we will stress on the
solution of Eq. (3.7) using a finite difference scheme. Eq. (3.7) differs from Eq. (3.1)
by [101]:

1) In Eq. (3.7) the unknown variables are a vector consisting of three components,
g
i.e., displacements in the z, y, and z space directions, while in Eq. (3.1) there

is only one unknown variable.
(2) Unlike Eq. (3.1), there are some mixed derivatives in Eq. (3.7).
(3) Eq. (3.1) is time-dependent, while Eq. (3.7) is not.

Therefore, it may not be very convenient to discretize Eq. (3.7) using the standard 7
point central difference scheme, instead, a 19 point finite difference scheme is employed

in the discretization of Eq. (3.7), as

7 4 4
E Ai—1Ui—1 + E Qi1 6Vite T E A942iWot2; = Fy, (3-8)
=1 =1 =1
7 4 4
E bi—1vi—1 + E biteUive + E biot2iWio42i = Fy, (3.9)
=1 =1 =1
7 4 4
E Ci1Wi—1 + E Co2iUgt2; + E Clo+2iV1042i = F%, (3.10)
= =1 =1
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where a, b, and c are coefficients determined by the grid step size as well as the material
properties of the medium, u, v, and w are displacements in the z, y, and z directions
respectively, and Fy, F,, and F, are the body forces in the three spatial directions
respectively. The three displacement components in Eq. (3.7) are expressed explicitly
using u, v, and w, as can be seen in Egs. (3.8), (3.9), and (3.10). The labeling of the
grid points is shown in Fig. 3.2. Even though it is a 19 point finite difference scheme,
only 15 points are used in each of the above 3 equations. For example, points 12, 14,
16, and 18 are not used in Eq. (3.8), points 11, 13, 15, and 17 not used in Eq. (3.9),

and points 7, 8, 9, and 10 not used in Eq. (3.10) [101]. Without loss of generality,

12

ik

17 6 15 9 4 10

Figure 3.2: The 19 point finite difference stencil defined in a unit cube.

Egs. (3.8), (3.9), and (3.10) may be expressed in the form of Az = b, where A is the
coefficient matrix, x is the unknown vector, and b is the right hand side. It is worth
noticing that the number of rows and the number of columns in the resultant matrix
A are triple of the number of internal grid points in a mesh, because of the fact that

there are three unknowns at each of the grid point [101].
3.3.2 Iterative solver

The sparse linear system arising from the discretized equilibrium equation needs to
be solved efficiently. Direct solution methods based on Gaussian elimination are

prohibitively expensive for such large scale 3D problems in terms of memory cost
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and CPU time. Thus iterative methods are generally believed to be a more viable
means in such situations. In this chapter, one of the fastest iterative methods, a
Krylov subspace method, is employed to solve the resulting linear systems. In order to
reduce the number of iterations, a robust preconditioner is used as well. In particular,
a linear system solver GMRES, a generalized minimal residual algorithm based on
Arnoldi process and implemented with reverse communication, is chosen to do the
computation [92].

The convergence rate of GMRES can be improved by a suitable preconditioning
technique. For a linear system Ax = b, the preconditioned system may be written as
[101]

(M;'AMZ") (Mgx) = M 'b, (3.11)

where M; and My are left and right preconditioners respectively, and should be
inexpensive to compute and easy to invert. The preconditioned linear system (3.11)
itself should be easier to solve iteratively than the original one. If Mp = I, left
preconditioning results. In contrast, if My, = I, right preconditioning results.

As one of the best known preconditioning techniques, incomplete LU factorization
is often applied to accelerate the convergence of GMRES, and widely used in solving
linear systems arising from engineering and medical investigations. By neglecting
most, or even all, the fill-in terms during the elimination process, the sparsity of the
L and U factors is preserved in the ILU factorization. The product matrix LU is then
only an approximation of the coefficient matrix. Here, a generic ILU algorithm with
thresholding (ILUT) is used to construct the preconditioner for GMRES. More details
about Krylov subspace methods and ILU factorization preconditioning techniques are

introduced in Chapter 2 and can be found in [94].
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3.4 Numerical Experiments and Discussion

Two numerical examples, hyperthermia and sinusoidal surface heating, are used to
exhibit the thermomechanical interaction by the proposed model. The efficiency
of ILUT in improving the computational performance is also investigated. In the
computation, the geometry size related to Fig. 3.1 is selected as: H = 0.03 m,
L =W = 0.08 m. The reason for such values is for the consideration of actual
applications and the implementation of boundary conditions. In real situations, the
interior tissue temperature usually tends to be constant within a short distance such as
2 ~ 3 c¢m (z direction) starting from the skin surface [129, 54, 66]. The computational
domain size in the y and z directions are chosen to be fairly large so that the symmetric
boundary condition, i.e., no heat flux goes in or out of the interested domain in the
y and z directions, can be implemented. The material properties and parameters in
Eq. (3.1) are p = p, = 1000 kg/m?, C = C, = 4000 J/(kg°C), T, = T, = 37 °C,
k=0.5W/(m°C), w, = 0.5 kg/(m?s), Q,, = 33800 W/m?, as listed in Table 3.1. For
simplicity, the surrounding fluid temperature is chosen as constant room temperature
T; = 25 °C [54, 25]. The material properties related to Eq. (3.7) are G = 3.0 x 10°

Pa, v = 0.25, v, = 0.31, & = 1.0 x 10~* K~ [101].
3.4.1 Case study: hyperthermia model

Hyperthermia is a heat treatment to biological body, a tool fairly often used in clinical
applications such as tumor control by artificially elevating the tissue temperature to
gain therapeutic benefits. The treatment of hyperthermia may be local, regional, or
whole body, and the corresponding heating style varies, such as microwave heating,
ultrasound heating, electrode heating, or thermal dose [117]. Even though hyperther-
mia is difficult to implement technically, its medical value has been shown in greatly
improving the therapy performance by combining with radiation treatment [91]. A

typical clinical application of hyperthermia is the treatment of cancer by selectively

31

www.manaraa.com



attacking deep-seated tumors with high temperature [58]. Due to the difference of
heating sources, hyperthermia can be done either externally or internally. For ex-
ample, the goal of standard hyperthermia treatments in internal heating is to raise
the temperature in the target area to a higher degree, approximately 43 °C, than
ordinary body temperature (37 °C) for up to one hour without excessively heating
the adjacent tissues [6]. Patients usually do not feel comfortable with such a long
time treatment. One drawback of the standard procedure is the difficulty in accu-
rately providing the desired thermal dose because of the possible changes of blood
flow rates and thermal properties and hence the change of heat transfer mechanism
between tissues and blood flow due to temperature variation. An alternative way is
the short duration high temperature thermal treatments, known as high-temperature
thermal therapy [101].

For simplicity, only point heating is considered here to investigate the temperature
response of tissue near tumor sites as did in some other research works [54, 25].
Practical examples of point heating can be found in clinical treatments where heat
is deposited through inserting a conducting heating probe in the deep tumor site or
delivering thermal dose to it. The point heating source to be studied is of the form
54]

Qr(mv Y, z, t) = P(t)5($ - xO)é(y - yO)é(z - ZO)7 (312)

where P(t) is the strength of the point heating source, which may vary with time,
d the Dirac function, and (zo,yo, 20) the location of point heating. In the present
example, we investigate the tissue thermal response of three point heating, and the
consequent effect of temperature change on the stress and displacement of the tissue
concerned. The locations of the heating sources are all chosen in the same cross section
at £ = 0.009m, and the coordinates of the three points are (0.009,0.032,0.04)m,
(0.009, 0.04,0.028)m, and (0.009, 0.04, 0.028)m, the same as in the work demonstrated

by Deng and Liu [25]. Among the three point heating sources, the heating strength
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is taken the same as P(t) = 1.0 x 107 W/m?®. It is assumed that the tissue is cooled
by convection at the skin surface. The convection coefficient is h; = 100 W/m? and
the temperature of the cooling medium is 7y = 15 °C [101].

The determination of heating style, heating location, and heat transfer parameters
in the simulation is for the purpose of convenience in presenting computational results,
and to be consistent with those in some references [21, 66]. Of course they can be

chosen as different values suitable for some applications consistent with the model

[101].
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Figure 3.3: Temperature distribution at x = 0.09 m and ¢ = 200 s (hyperthermia).
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Figure 3.4: u displacement at z = 0.009 m and ¢ = 200 s (hyperthermia).
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Figure 3.5: Average normal stress P at z = 0.009 m and t = 200 s (hyperthermia).

In the quasi-steady state model, the time dependent thermomechanical responses
can be achieved by solving the heat equation to get transient temperature distribution,
and then solving the equilibrium equation to get displacement distribution based on
the temperature at each time step. For brevity, only results in the (y—z) plane at x =
0.009 m, where the three point heating sources locate, are displayed. Fig. 3.3 shows
the temperature distribution at ¢ = 200 s, Fig. 3.4 is the corresponding displacement
distribution in the x space direction. The stress distribution is presented in Fig. 3.5

in the form of pressure P, calculated as [101]

_Ozz + Oyy + 0.,

3

P= (3.13)

As shown in Fig. 3.3, the highest temperature is in the position where the heating
source is placed. The same is true for the displacement (Fig. 3.4) and stress (Fig. 3.5).
It can be deduced without much difficulty that the tissue in the heated position is
more likely to be damaged than that in locations that are not heated. This is what we
expected in heat therapy by heating the target to a certain temperature to damage
it and eventually kill it without major injury to the neighboring healthy tissues.
The thermomechanical interaction has been presented at a fixed time ¢ = 200 s

ns, as shown in Figs. 3.3 - 3.5. In the following space, we will
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Figure 3.6: Transient temperature distribution at (0.009,0.032,0.04)m (hyperther-
mia).

show the thermal and mechanical responses at a fixed location but different time.
For brevity, only the result at one of the three positions where heating sources are
located, i.e., (zo,¥o,20) = (0.009,0.032,0.04)m, is plotted, as displayed in Figs. 3.6
- 3.8. The variation of temperature with time is exhibited in Fig. 3.6, and that of
stress is shown in Fig. 3.8. It can easily be seen that both temperature and stress have
similar trend. That is probably because the thermal stress overwhelms mechanical
stress in this particular case. The temperature increases rapidly in the early time of
heating, reaches a peak value, then decreases gradually towards steady-state. That is
because of the convection between the skin surface and the surrounding media with
a lower temperature of Ty = 15 °C. Fig. 3.7 is the change of displacement with time
due to temperature difference. All three components of displacement increase with

time first fast and then gradually[101].
3.4.2 Case study: sinusoidal surface heating model

Oscillating heating is a common technique in thermal analysis, such as the application
of modulated temperature programming to the investigation of thermomechanical in-

teraction [87]. One example is the recent usage in thermogravimetry of modulated
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Figure 3.7: Transient displacement distribution at (0.009,0.032,0.04)m (hyperther-
mia).

temperature programs to determine the degradation kinetics of materials. A sinu-
soidal temperature profile is the most common one among the various oscillating
heating modulations. Sinusoidal surface heating can be generated by an instrument
with repeated irradiation from regulated laser, and is used to estimate the blood

perfusion [82]. The sinusoidal heating is taken in the form of [25]
f(t) = qo + qu coswt, (3.14)

where, f(t) is heat flux (W/m?), g a constant, g, the constant oscillation amplitude
of sinusoidal heating, w the heating frequency. Eq. (3.14) is actually the flux on
the skin surface provided by some external devices. In computation, the sinusoidal
heating is implemented by specifying a given heat flux boundary condition on the

skin surface. The actual form of Eq. (3.14) is taken as [100]
F(t) = 1000 + 500 cos(0.02¢). (3.15)

The transient thermomechanical response in the case of surface heating are presented
in Figs. 3.9 - 3.11. The temperature changes with time at the skin surface corre-
sponding to Eq. (3.15) can be seen in Fig. 3.9. Because of continuous heating, the

temperature.on.the skin surface increases gradually. It is clear, there are about six
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Figure 3.8: Transient average stress distribution P at (0.009,0.032,0.04)m (hyper-
thermia).

cycles in the history of temperature variation, which is due to the value of w in
Egs. (3.14) and (3.15). In the case of w = 0.02, the period of cosine function is 1007
seconds, and there are approximately six cycles in 2000 seconds. The thermal-induced
displacement is shown in Fig. 3.10. Similar periodical changes can be observed. As
expected, the magnitude of displacement variation is greatest for component u, since
the temperature changes only in the x direction by the specified boundary conditions:
symmetric in both the y and x directions. The thermal-induced stress also changes

oscillatorily as displayed in Fig. 3.11 [101].
3.4.3 Computational Performance

Uniform grids are used in all the three space directions in numerical computation,
also the same number of grid intervals are assigned in each of them. In the numerical
examples done in both Sections 3.4.1 and 3.4.2, twenty equally spaced grid intervals
are used, i.e., 19 x 19 x 19 internal grid points. The consequent number of unknowns
are 57 X 57 x 57, as shown in Table 3.3. The information of the coefficient matrix A
for the mesh size of 39 x 39 x 39 is included in Table 3.3 as well. The computation

was done on a Sun-Blade-100 machine with a single 500 MHz SPARC processor and
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Figure 3.9: Transient temperature at skin surface (sinusoidal heating).
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Figure 3.10: Transient displacement at skin surface (sinusoidal heating).

2 GB memory [101].

Tables 3.4 and 3.5 present the computational performance with and without the
ILUT preconditioner for two kinds of mesh sizes, i.e., n = 6859 and n = 59319, for the
hyperthermia case study. In both cases, the parameters in the ILUT preconditioner
are the same, i.e., drop tolerance 7 = 10~*, number of fill-ins p = 40, and the size of
the Krylov subspace is 50. It can be seen that the use of the ILUT preconditioner has
greatly improved the computational performance. In the case of n = 6859 (coarser

grid), the number of iterations with the ILUT preconditionersis about eight times
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Figure 3.11: Transient average normal stress at skin surface (sinusoidal heating).

Mesh size | No. of unknowns | No. of nonzeros
6859 20577 285285
59319 177957 2569905

Table 3.3: Information on the coefficient matrix A for various mesh sizes (hyperther-
mia).
less than that without the preconditioner. In the case of n = 59319 (finer grid), the
number of iterations with the ILUT preconditioner is about fifty times less than that
without the preconditioner. The total CPU time when using the ILUT preconditioner
is less than a half of that without using the preconditioner in the coarser grid case,
and about one fifth in the finer grid case [101]. So the advantages of using the ILUT
preconditioner are more remarkable when a finer grid discretization is used [103].
The influence of stop criterion on the computational cost is also studied in terms
of number of iterations and CPU time. As shown in Tables 3.4 and 3.5, both the
number of iterations and the total CPU time increase when the stop tolerance is

changed from 107 to 1072 [101].
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n = 6859 =107 6=10"1
Computational cost | with ILUT | without ILUT | with ILUT | without ILUT
No. of iterations 8 201 10 258
Factorization time 7.85 - 7.71 -
Total CPU time 9.48 20.59 9.73 27.20
Number of fill-ins 40 - 40 -
Krylov subspace size 50 50 50 50

Table 3.4: Computational performance with/without ILUT at n = 6859 (hyperther-

mia).

n = 59319 §=10"" d=10"12
Computational cost | with ILUT | without ILUT | with ILUT | without ILUT
No. of iterations 9 452 11 542
Factorization time 90.20 - 90.65 -
Total CPU time 106.08 498.13 111.15 590.76
Number of fill-ins 40 - 40 -
Krylov subspace size 50 50 50 50

Table 3.5: Computational performance with/without ILUT at n = 59319 (hyperther-
mia).

3.5 Summary

Thermomechanical interactions were investigated in a three dimensional Cartesian
coordinates. Pennes bioheat equation and the modified Duhamel-Neuman equations
were proposed to model the thermal-induced mechanical behavior. We used the quasi-
steady state thermoelasticity, where temperature and mechanical properties are not
coupled and they are solved independently. The temperature is considered time-
dependent, which is solved using a Crank-Nicolson numerical scheme. The mechanical
properties themselves are not time-dependent, but they are related to temperature
variations, so the transient mechanical properties such as displacement and stress can
also be attained by solving them for various temperature distributions at each time
step.

The heat equation was discretized using the standard 7 point central difference

scheme, while the mechanical equilibrium equations were done by a 19 point finite

difference scheme. Both of the schemes are second-order in accuracy. The resulting
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sparse linear systems from the discretization of both the heat transfer equation and
the mechanical equilibrium equations are solved iteratively using GMRES solvers
accompanied with the ILUT preconditioners. Both the number of iterations and the
total CPU time are reduced in a great margin when the ILUT preconditioners are
used.

Two numerical experiments were conducted, hyperthermia and sinusoidal heating,
which represent typical heat transfer processes involved in soft tissues in biological
bodies, such as heat therapy and skin burn. As expected, we obtained the time-

dependent temperature distribution as well as the corresponding thermal-induced

mechanical responses.

Copyright ©) Wensheng Shen 2007
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4 Thermal Response of Skin Subject to Laser Heating

4.1 Introduction

Since the advent of the first working laser in 1960, there have been many laser-
related applications [2, 5, 70, 44, 127]. Among them, laser medicine is probably
one of the most popular applications, e.g., the use of lasers in dermatology, such
as skin resurfacing, removal of vascular lesions, laser-assisted hair removal, tattoo
removal, and so on. Due to many innovations in technology, different lasers have
been developed to perform specific tasks, which has dramatically increased the use of
laser in dermatology.

The use of lasers in dermatology can be traced back to 1963 by Leon for a test in
human skin [118]. The first medical lasers were continuous beam lasers such as COq
laser, argon laser, and Nd:YAG laser. Even though these lasers are fairly effective,
their applications are limited by the fact that the results are operator dependent, and
may be affected by the speed of surgeon’s hand, and may lead to undesirable risks such
as scaring due to excessive thermal injury of normal skin [74]. This problem was solved
by the theory of selective photothermolysis introduced by Anderson and Parrish in
1983 [4]. The selective photothermolysis can be accomplished by properly choosing a
wavelength, pulse duration, and pulse energy that can be best absorbed by a specific
target with a particular chromophore. That technique requires that the wavelength
of the laser light be absorbed by the target in order to have an effective treatment and
the laser energy be confined to the intended target [52]. Newly developed flashlamp-
pumped, pulsed-dye, copper-vapor, and Q-switch lasers pertain such properties.

In the use of pulsed laser emission, the intended target experiences thermal cooling
during the intervals between any two adjacent pulses. For better description of laser
operation, the thermal relaxation time (TRT) is introduced and defined as the time

during which 50% of the incident heat has transfered out of the target vessel to
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adjacent tissues [5, 52]. If the pulse width is equal to or less than the TRT of the
chromophores, the resultant thermal damage will be confined to the chromophore.
Ideally, in clinical applications, the energy of laser is high enough to damage the
chromophore, while the pulse duration of laser is shorter than the thermal relaxation
time of the target. The depth that laser light penetrates into the skin is determined by
the wavelength of the laser light as well as the absorption spectrum of the encountered
chromophores.

In the treatment of dermatologic laser surgery, the laser light may be reflected
from, transmitted through, or absorbed by the skin. For the purpose of clinical effect,
it is desirable that the emitted laser light can be absorbed by the intended targets
and converted to thermal energy to heat the target to an appropriate temperature.
Unavoidably, the temperature of normal tissue surrounding the intended targets is
increased to certain extent.

The skin is sensitive to temperature change. The effect may not be significant
when the temperature at the skin surface is below 44°C. However, if the surface
temperature is above 44°C, irreversible damage may happen. An investigation of the
heating intensity and the duration of the exposure suggested that when the surface
temperature is greater than 51°C, the exposure time required to destroy the epidermis
is so short that the deeper layers of cells are brought to a state of thermal equilib-
rium with the surface and the trans-epidermal necrosis may occur [73]. When the
exposure temperature is raised as high as 100°C, steam may be formed and intensive
vaporization will cause acute disruption to the skin. Higher temperatures will further
incur tissue burning and carbonization.

We propose to investigate the tissue thermal response to laser heating before a
dermatological surgery is operated to minimize the possible adverse effects and com-
plications associated with the surgery. A multilayer model based on the physical

structure of human skin is employed to predict the temperature distribution of living
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tissues when they are treated by lasers. The objective of this work is trying to provide
a quantitative connection between a dermatological surgery laser and the correspond-
ing tissue thermal response. The resulting quantitative description is very important
for choosing an appropriate laser, using suitable laser pulse duration, deciding proper
laser output power, and determining accurate total exposure time.

Very often the related mass transfer such as water evaporation and diffusion is not
considered in modeling the tissue response of high temperature exposure [2, 44, 124].
However, water transport may play an important role in this process [70], and the
heat loss due to the surface evaporation of water may become a dominant term in
the heat transfer equation [119].

We develop a 3D numerical model to predict the transient temperature distribu-
tion in skin tissues with the consideration of water evaporation on the skin surface
and water diffusion in the tissue. The standard 7 point finite difference scheme which
is second order in accuracy is used to discretize the 3D partial differential equations.

We apply an iterative method to obtain the solution of the resultant linear systems.

4.2 The Multilayer Model

The transient temperature variation in living tissue due to internal or external heat-
ing can be described by Pennes bioheat equation [85], which expresses the energy
conservation in biological body where the thermal energy is assumed to be transfered
by diffusion only, i.e., Fourier heat conduction, and is widely used in modeling the
thermal response of biological tissue [30, 66, 67]. In the case that human skin is sub-
ject to laser heating, the modified bioheat transfer equation including the heat losses
due to water evaporation and diffusion, may be written as [30, 70, 44]

or 0*T o*T 0*T

+ wab(Ta — T) + Qm + Qr + Qe + Qd- (4'1)

Eq. (4.1) is similar to Eq. (3.1), with two additional terms, Q. and @4, where Q. is

the volumetrie heat doss from water evaporation on the surface of the skin (W/m?),
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Qq the volumetric heat loss due to water diffusion in the tissue (W/m?), and @, the

regional heat sources (W/m?), which can be interpreted as

Qr = pad(2,9,2) f (1), (4.2)

where p, is the tissue absorption coefficient (1/m), ¢(z,y, z) the local fluence rate of
the laser light (W/m?), and f(¢) the time function related to the laser pulse duration
and the intervals between each duration. The local fluence rate of laser light is
expressed as a product of irradiation, Gaussian shaped laser beam, and Beer’s law of

axial attenuation [44]

$(z,y,2) = E exp(=2(y" + 2°) /W) exp(—pua2), (4.3)

where E is the incident irradiance (W/m?), defined as E = 2P/(xW?), P the laser
power (W). W is the 1/e? waist (m). The time function f(¢) is supposed to be

periodic and may be expressed as [100]

1 (i—V)P <t<[i—1)+kP, .
ft) = {0 (i — 1)+ K|P, < t <iP,, i=1,23..., (44

in which 7 is the number of periods, P, the period s, k the fraction of period in which
the skin is exposed to laser source.

We develop a 3D multilayer model to predict the skin temperature distribution
when the skin surface is exposed to laser heating. The multilayer model is based on the
actual skin structure. The human skin may be divided into three layers. Starting from
the top of the skin surface toward the body core, they are the epidermis, the dermis,
and the subcutaneous [120], as shown in Fig. 4.1. The boundary conditions with
respect to Eq. (4.1) corresponding to the computational domain shown in Fig. 4.1,
where the space in the x direction starts from the body core (x = 0) and ends at the

skin surface (x = H), can be described as [101, 104]:
1) Atz =0,T=T, and at x = H, —k%L = hy(T — T;). Usually the skin is
ox f !

intentionally.cooled externally, e.g., using cryogen spray cooling in laser surgery
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[1, 23, 115], and the heat transfer rate due to convection is much higher than
that from the skin surface radiation, so the effect of radiation from the skin

surface may be neglected.
(2) Aty =0, —k%—gzo, and at y = L, —k‘;—:gzﬂ.
(3) At 2=0, k2L =0, and z = W, —k4%L = 0.

Since the heating source is assumed to be in the center of the skin surface under
investigation, and the computational domain is selected as 1/4 of the entire domain
under investigation, it is convenient to use symmetrical boundary conditions at y = 0
and z = 0. The specification of symmetrical boundary conditionsaty = Land z = W
can be justified by the reality that the corresponding two borders parallel to the x axis
are far away from the heating source, hence the temperature near the borders may
not be affected by the heating source. The actual dimensions of the computational
domain and locations of the heating sources are given in Section 4.6. In the case
of symmetrical heating source, a 2D modeling in the cylindrical coordinates may be
used. However, the present method can cope with complex 3D heating patterns such

as that by an array of laser beams.

Laser beam

Computational domai ‘ ‘ ‘ ‘ ‘
il

| P
sub¢utanedus

vz |

Figure 4.1: The computational domain of a soft tissue (a three layer skin).
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4.3 Water Evaporation and Diffusion

The evaporation of water is the diffusion of water molecules from the water surface to
the atmosphere through the boundary layer covering the water surface. So, the rate
of water evaporation equals the rate of diffusion of water molecules [47]. The heat

loss due to evaporation @), in Eq. (4.1) can then be expressed as [70]:
Qe = MAH,y,, (4.5)

where 1 is the rate of water vaporization from the skin surface (kg/(m?s)), AH,qp
the enthalpy of vaporization of water, a function of temperature as tabulated in [63].
For the convenience of computation, the tabulated data is fitted to a 4th degree
polynomial using the least-squares fitting over the temperature range of 0 ~ 300°C,

which is

AH,,p = 45.0445 —0.04117;, — 2.8664 x 10™°72 +9.2581 x 10~°T;> —9.0013 x 10~ '°T},

(4.6)
in which T, is the water temperature that is assumed to be equal to the tissue temper-
ature (°C), and standard derivation of the data fitting is 0.01358. The concentration
of water vapor near the skin surface is higher than that in the dry air, so there exists
a force that drives the vapor flowing away from the skin surface to the dry air. The
rate of water vaporization can be expressed as a function of the gradient of water

vapor concentration [47, 70], i.e.,

m = D, (4.7)

o~ Por \RT

OCy 0 (Mwa)
where D, is the water vapor diffusion coefficient in air (m?/s), M, the molecular
weight of water, a constant value (g/mol), R the universal gas constant (J/mol°K),

P, the vapor pressure of water (Pa), and T, the temperature of the water vapor (°K).

Assume that the air flow on the skin surface is laminar and there exists a steady-state
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boundary layer, we then rewrite Eq. (4.7) in the following form [70]

w, (1), (1),
*R O '

(4.8)

Here D, is the average water vapor diffusivity in the boundary layer covering the water
surface, and H, the relative humidity of the air. The subscript (), or (), denotes the
properties on the skin surface and in the air respectively. J, is the average thickness
of the boundary layer over which a water vapor concentration gradient occurs. The
boundary layer of water vapor transfer can be determined by the exact analysis of

the laminar flow as [131]

5 1/3
== Sel/3 — (DL> , (4.9)

where § is the thickness of the hydrodynamic boundary layer (m), d. the thickness of
the concentration boundary layer (m), v the kinetic viscosity of air (m?/s), and Sc
is the Schmidt number, which is defined as the ratio of the momentum diffusivity to
the mass diffusivity. In the case of a laminar flow over a flat plate, the thickness of

the hydrodynamic boundary layer can be found by the Blasiu’s solution as
by =54/ —, (4.10)

where vy, is the air velocity far away from the skin surface (m/s), z is the location
on the skin surface (m), and 6, is the thickness of momentum boundary layer at the
location of z (m). Hence the average thickness of momentum boundary layer over
the distance of L is found to be

_10 vL

3V Vs

5 (4.11)

In the simulation, the dynamic viscosity of air » and the diffusivity of water vapor in
air D at the temperature of 25°C are taken to be 1.57 x 107® m?/s and 2.6 x 10°
m?/s [131] respectively. The free-stream velocity of air vy, is assumed to be 0.5 m/s,
and the distance L to be 0.03 m. The resulting average thickness of the water vapor

concentration.boundary is 0.0038 m.
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In Eq. (4.8), the vapor pressure P, is a function of temperature and is obtained
by an 8th degree polynomial according to the table of vapor pressure of water in [64].
The following polynomial shows the dependence of vapor pressure on the temperature
in the range of 0 ~ 250°C, from a least-squares data fitting,
P,, =0.6027 + 0.04761T;,, + 1.158 x 10 *T2 + 3.5959 x 10 °T? +1.3926 x 10 T},

+ 3.4857 x 10772 + 2.0523 x 107"°T2 — 2.8046 x 10~"T7 + 3.8649 x 10~'"T%,
(4.12)

in which T, is the temperature of tissue surface (°C). The standard derivation of the
above least-squares data fitting is 0.02954. The diffusivity of water vapor in air is
also temperature dependent. Again the temperature dependency of the diffusivity of
water vapor in air is expressed by a 2nd degree polynomial for the temperature range

of 293.15 °K to 673.15 °K under the atmosphere pressure, which is
D, = 8.8187 x 107"T* + 0.001506T — 0.2784, (4.13)

where D, is in the unit of (cm?/s) and T is the absolute temperature of air in the
vapor boundary-layer covering skin surface, which is approximated as the average
of the skin surface temperature and the surrounding environment temperature (°K).
Eq. (4.13) is based on the tabulated data in [65], and the standard derivation of the
least-squares data fitting is 0.007315.

Due to the evaporation of water from the skin surface, there exists a gradient of
water density in the tissue with lower density near the skin surface and higher density
inside the skin, that causes possible water transport from the sub-surface toward the
surface. The water transport in skin may be expressed by Fick’s law of diffusion,

which in rectangular coordinates is written as [131]

Opw A [0P0w | Ppw | pu
W_D 5z + 5% + o | (4.14)

where D is the coefficient of water diffusion in tissue (m?/s) and p,, the corresponding

water.density-(g/m?).. The coefficient of water diffusion in the skin is taken as D =
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5x 1071 m?/s, as used in [27, 70]. The distribution of water density in the tissue can
be obtained from Eq. (4.14), and the flow rate of water diffusion may be estimated
as [27]

o . _par

W=-D—=

— 4.1
dz Az’ (4.15)

where Ap is the difference of water content between the skin surface and the inner
tissue, and Az the thickness of tissue investigated. The volumetric heat transfer rate

due to water diffusion is then calculated as

: (4.16)

_ Dce,(ps — po)(T —Te)
Qo= (Az)?

where ¢, is the specific heat of water (J/Kg°C), ps the water content on the skin sur-

face, p. the water content in body core, T the tissue temperature, 7, the temperature

in body core. Eq. (4.16) can be further simplified as a convection-like term,
Qa4 = hy(T -T,), (4.17)

where h,, is the volumetric heat transfer coefficient (W/(m3°C)), given by h, =

Dey(ps — pe)/(Az)?.

4.4 Numerical Scheme and Solution Strategy

The inclusion of two extra terms, the volumetric rate of heat loss due to evaporation
Q. and due to water diffusion ()4, causes more complexity in the computation. Since
evaporation happens only on the skin surface, the evaporation term (). is handled
by considering it as a part of the boundary condition on skin surface. As a result
of using an 8th degree polynomial to describe the temperature dependency of water
vapor pressure and using a 4th degree one for the temperature dependency of the
enthalpy of water vaporization, (). is approximated by a highly nonlinear 12th degree
polynomial. If the Newton’s method is used for linearization, a high computation cost

must be paid. Instead, a simple way of linearization is preferred in our computation.
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The 12th degree polynomial of (), may be written as
Qe=co+c1T +coT?+ -+ 1,7, (4.18)
which can be further approximated as
Qe = co+ (c1 + 2Ty + 3T + -+ - + c12TyT, (4.19)

where ¢y, ¢1, ..., and ¢ are constant values obtained from Egs. (4.5), (4.6), (4.8), and
(4.12), and T, is the temperature obtained from the previous time step. Thereafter
the nonlinearity is solved by using a linear expression of the temperature dependency.
As shown before, the term due to water diffusion ()4 may be dealt with an addition

of a convection-like term. Eq. (4.1) can then be expressed in the following form

or T T . O°T
A Ay
o = o TR T

+wpyCo(Ty = T) + hyy(T. — T) + Quy + Q. (4.20)

For the brevity of expression, Let £ be the elliptic operator defined by [54]

0*T o0*T o0*T
T = — T — h,T 4.21
[, k82$ + k' 82y + k' 822 wbcb hw ’ ( )

then Eq. (4.20) can be written as,

oT
pCa = LT + wyCo T, + hoy T, + Q. + Q- (4.22)

Let A be the finite difference approximation of £ with the p-th order of accuracy and

rewrite Eq. (4.22), we have the following expression,

oT

where o = k/(pC), AT ~ LT + O(h?), h the maximum of the step sizes in the z, y,
and z space directions, and S = (wyCpTy+ Qm+Qr)/(pC). Using the Crank-Nicolson
scheme and the standard 7 point central finite difference approximation, the following

expression can be derived from Eq. (4.23),

Tn—|—1 _Tn

1 1
- §a.AT"+1 + S0AT" + Sz, (4.24)
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Here At is the time step. The truncation error of the scheme is £ = O(At? + h?).

Eq. (5.8) may be written in a matrix form as,
A A
(I — %A) T = (1 + %A) T" + aAtS" /2, (4.25)

The reason that we use the Crank-Nicolson scheme is that the scheme is easy to
implement, theoretically highly stable, and second-order accurate in both space and
time. In some applications, the physics of the investigated problems needs to be
considered, and additional limitations may be required for the usage of the scheme.
That will be discussed in the next section.

We need to solve the sparse linear system, Eq. (4.25). Large sparse linear systems
arising from 3D problems are usually solved by iterative methods. Stationary itera-
tive methods such as Jacobi method and Gauss-Seidel method are simple to derive
and implement, however, their rate of convergence is slow and the convergence is only
guaranteed for certain classes of matrices. The successive overrelaxation method, con-
verging an order of magnitude faster than Gauss-Seidel method, is still considerably
slow compared with modern projection based methods. We use GMRES to solve the
linear system. If the m-th approximation to the solution is used, the subspace would
be a span of the set of vectors {r(®, Ar(® A2p©) ... Am=1:0} where r( is the
residual corresponding to the initial guess. In GMRES, the modified Gram-Schmidt
method is used to construct orthogonal bases of the Krylov subspace [92].

The above-described procedure is for solving the bioheat equation. The water
transport equation, Eq. (4.14), is also a Poisson’s equation, which can be solved by
the same procedure as used for the heat equation. Moreover, Egs. (4.1) and (4.14)
are coupled by boundary conditions. The rate of water loss on the skin surface is a
function of temperature. They are decoupled by solving Eq. (4.1) to get the tempera-
ture distribution and then using the temperature on the skin surface to calculate the

rate of water transport.

52

www.manaraa.com



4.5 Stability Analysis

The Crank-Nicolson scheme takes the average of the right-hand side between the
beginning and the end of each time step for the discretization in time domain and is
known unconditionally stable. But if the time step is too large, solutions could be
locally oscillatory and eventually become nonphysical. In some computations, where
density, absolute temperature, and any other non-negative properties are involved,
the dependent variables can never become negative physically, the actual time-step
we can use should be limited. Using the bioheat equation as an example, we can

rewrite Eq. (5.8) in full as the following,

n+1 n

4,5,k B,k

At B

n n n n n n n n n
la 7—;4’17]5’6 B 21';’.%1‘; + E_laj’k + 7;5]+15k B 27;5.77]9 + Y;,j—l’k + 1’;,.],]6_'_1 B 27;5.77]9 + n’jak_l
2

Az? Ay? AzZ?

i,j+1,k i,k i,J,k+1 i,k

* 2 Ax? Ay? Az?
_ lwabTi?j,k _ lw”C”TiZTkl . lhwﬂilj,k . lthiilJTkl + gntl/2
2 pC 2 pC 2 pC 2 pC ’

(4.26)

where, Az, Ay, and Az are the step sizes in z, y, and z directions respectively. We

rewrite Eq. (4.26) as follows so that only the term containing 7}7;13 is kept at the left

hand side,

wyCp 1. h, Ata Ata Ata
—At— =
0 2 T AR T A T AR

n—+1 n—+1 n+1 n+1 n+1 n+1
lAta ,1—;_"1»]119 + 1—;'_17.].71C + 1—;5]+15k + Eaj_lzk + 7—;1]’1‘:4'1 + ,Ijiajak_l
2

1
E?]Tkl (1 + §At

Ax? Ay? Az?
1 C 1. h, At At At
b 2 pC 2 pC Az? Ay?  Az?
T ¥ T vy T * Tigovn | Tijasn + Tinn
Ax? Ay? Az?

+SIPAL,

(4.27)

1

where, Y;"J“Lkl is the unknown temperature at each grid point at the time level of n+ 1.

In Eqe (4:27)situis clear that the value inside the parentheses at the left hand side
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is positive, and the first and third terms at the right hand side are also positive.
Physically, the absolute temperature can not be negative, i.e., it is always required

that Tznfkl > 0. This condition can always be satisfied if the second term at the right

hand side in Eq. (4.27) is not negative, which gives,

1. wCy h_w Ata  Ata Ata

g

1—=-At — — — > 0. 4.2
2 pC 2 pC  Az? Ay Az2 T 0 (4.28)
The desired time step size can be derived from Eq. (4.28) as
1
At < : (4.29)

SR TR
The Crank-Nicolson scheme is second-order in accuracy spatially and temporally.
However, in solving the transient bioheat transfer equation described in this chapter,
the time step size cannot be chosen much larger than the criterion described by

Eq. (4.29), otherwise unexpected numerical oscillation may be encountered.

4.6 Numerical Experiments and Discussions

In the 3-dimensional model, the thickness of each of the skin sub-layer is epidermis
8.0 x 107® m, dermis 0.002 m, and subcutaneous 0.01 m [120], as listed in Table 4.1.
For the convenience of simulation, the area of interest on the skin surface is assumed to
be a square, and the center of the square is exposed to a laser beam with an diameter
of ® =5 mm [1, 2]. The selected domain is symmetrical with regard to the planes at
y =0 and z = 0. So, actual computation is performed in only one fourth of the total
volume, as shown in Fig. 4.1 [104] by computational domain, and the sizes of the
computational domain in the y and z directions are L = W = 0.015 m. The material
properties and parameters in Eq. (4.20) are shown in Table 4.1 [1, 120, 44]. The
surrounding fluid temperature is chosen as the constant room temperature 7 = 25°C
[54].

A total of 90 x 50 x 50 grid intervals are used in the computation, where a uniform

grid-is-used.in-each-of the y and z directions with a mesh size of Ay = Az = 0.0003
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Table 4.1: Skin thickness and thermal physical properties used in this model.

Properties Epidermis Dermis Subcutaneous Blood
Thickness H (m) 8.0x 107>  0.0020 0.010
Thermal conductivity £ (W /(mK)) 0.25 0.50 0.20
Density p (W/(mk)) 1200 1200 1000 1060
Specific heat C (J/(kgK)) 3600 3400 3000 3770
Blood perfusion rate w, (m?/s/m3tissue) 0 0.00125 0.00125
Absorption coefficient p1, (mm™1) 80 2.4 1.0
Initial water content Wy (Kg/m?) 780 780 780
interface
1 2
o o
i-1 i i+1

Figure 4.2: The interface between two different materials.

m. A non-uniform grid is used in the = direction. Specifically, the epidermis layer is
uniformly divided into 10 intervals, the dermis and subcutaneous layers are uniformly
divided into 40 intervals each. The resulting mesh size in the z direction is Ax =
8 x 1075 m in epidermis layer, 5 x 10 °m in dermis layer, and 2.5 x 10~* m in
subcutaneous layer. Because of the difference of material properties, two interfaces
are formed among the three layers of the skin. On the interfaces, both the heat flux
and temperature should be continuous. Without loss of generality, assuming there
exists an interface between any two materials, i.e., material 1 and material 2, as shown

in Fig. 4.2, the heat flux in materials 1 and 2 can be expressed by

dT T, — T,
= kb — = T 4.30
1 1 dz 1 N ) ( )
and
dT Tivn =T,
= ko = T * 4.31
g2 zdac 2 Az, ) ( )

respectively, where ¢; is the heat flux in material 1, k; the thermal conductivity of
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material 1, ¢o the heat flux in material 2, k; the thermal conductivity of material 2.
The heat flux through the interface can also be expressed by a second-order centralized
finite difference as

dT Toyr — Tiy

= ko = et T oL 4.32
e dx Az, + Axg (4.32)

where ¢; is the heat flux through interface, k; the thermal conductivity on the interface.
Physically, the heat fluxes must satisfy ¢; = ¢ = ¢;, and the thermal conductivity on

the interface is consequently found as

ko = kle(Aﬂil + Al‘g)
v klA.??Q + kgAl‘1 ’

(4.33)

Other properties on the interface may be calculated as C; = (C1Ax1+CoAxy)/(Ax+
Axs), pi = (p1Az1+p2ALs) /(Az1+Axs), and wy; = (wp Az1+wpeAs) /(Axy+Axs).
Eq. (5.9) is complete after we find the properties on the interfaces. The number of
unknowns is 213, 689 in the resulting linear system, and the corresponding number of
nonzeros in the coefficient matrix is 1,473, 577.

It is assumed that the skin under investigation is subject to laser heating every
0.1 s with a duration of 0.005 s for 2 s, which corresponds to i = 20, P = 0.1
s, and k = 5 % in Eq. (4.4). The time step is chosen as At = 0.001 s, so that
the laser heating is complete in 5 time steps in each period. The selection of At is
contingent on Eq. (4.29). In this particular case, the dominant term is o/ Az? due to
the small mesh size in the = direction. So, the time step size may be approximated
as At =~ Ax?/a =~ 0.0011 s.

3D temperature distribution of skin subject to a pulsed laser-heating under the
consideration of water evaporation and diffusion is presented in the form of contour
plot and shown in Fig. 4.3, where the blue color indicates the interface between epi-
dermis and dermis layers, and the green color indicates the interface between dermis
and subcutaneous layers [104]. Note, in order to display the results in a better way,

only part of them, i.e., 0 <y < 0.005 m and 0 < z < 0.005 m is shown in Fig. 4.3.
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Figure 4.3(a) shows the mesh arrangement. A uniform mesh is used in the y and z
space directions, while a non-uniform one is applied in the x direction, with coarse
grid near the body core and fine grid near the skin surface. Figure 4.3(b) shows the
contour plot of temperature distribution in the computational domain when the skin
surface is exposed to the pulsed laser-heating for 2 s. The parameters of the Gaus-
sian shaped laser beam corresponding to Eq. (4.2) are P = 12 W, W = 0.0025 m,
and p, = 80, 2.4, and 1 mm ! in the epidermis, dermis and subcutaneous regions
respectively. As expected, an axisymmetrical temperature profile is obtained due to
the laser source in Gaussian distribution and the highest temperature is near the
center of the region where it is heated. Figures 4.3(c) and 4.3(d) use the same data as
Figure 4.3(b) but are viewed from different angles. Figure 4.3(c) is the side view from
which how deep the skin is affected by laser-heating can be seen clearly. Figure 4.3(d)
is an anatomical view of the temperature variation from which the temperature distri-
bution on the three adjacent orthogonal planes is clearly shown. These three figures
together give good general presentation of the skin tissue thermal response to which
part, how large the area, and what extent the skin is affected by the specific heating
[104].

The 3D plot in Fig. 4.3 only shows temperature value at the fixed time t = 2 s
with water evaporation and diffusion. However, the effect of water transport on and
the temperature history with time are not shown. These aspects are exhibited in
the next three figures. Figure 4.4 shows the temperature variation along the center
line (y = z = 0) of the computational domain at t = 2 s. It is obvious that the
temperature near the skin surface is reduced in a big margin by considering the
cooling effect of water evaporation and diffusion. It is interesting to note that the
predicted highest temperature is not on the skin surface but somewhere near the
interface between the epidermis and dermis after considering the cooling effect of

water transport. Even though the laser irradiance is axially attenuated by Beer’s
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55.3599
49.2119
43.0639

61.5079
55.3599 61.5079
49.2119 55.3599
43.0639 492119
43.0639

(c) (d)

Figure 4.3: 3D temperature distribution of the skin subject to laser-heating with
Gaussian profile at t = 2 s. (a) The mesh of the computational domain, uniform in the
y and z directions, non-uniform in the z direction. (b) Contour plot of temperature
viewed from the skin surface (y — z plane at = 0.01208 m). (c) Contour plot of
temperature viewed from one side (z — z plane at y = 0.005 m) of the computational
domain. (d) Contour plot of temperature viewed anatomically (starting from the
point z = 0.01208 m, y = 0 m, and z = 0 m to view the temperature distribution
on the three adjacent orthogonal planes. The grids and scales are on in (a) and (b)
but off in (¢) and (d). The boundaries of computational domain are plotted in red.
The blue color indicates the interface between epidermis and dermis, and the green
color indicates the interface between dermis and subcutaneous. The parameters of the
Gaussian shaped laser beam corresponding to Eq. (4.2) are P = 12 W, W = 0.0025
m, and j, = 80, 2.4, and 1 mm ! in the epidermis, dermis and subcutaneous layers
respectively.
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law [44], a large portion of the heat is removed by water evaporation on the skin
surface, consequently temperature near the skin surface is lower than that of its inner
neighbors. Also the location where the highest temperature appears is changing with

time [104].

130
120r

110r

—— evaporation not considered
100} - - - evaporation considered

©
o
T

80r
701

Temperature TCC)

60
50/
40

30 . . . . . .
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

x(m)

Figure 4.4: The temperature change as a function of skin depth with/without evap-
oration.

The change of temperature with time on the skin surface is studied for both
cases considering and not considering water transport to demonstrate the influence
of water evaporation and diffusion on the skin thermal response in another way. In
particular, the temperature history at the center point of the heated region (x =
0.01208 m, y = z = 0 m) is plotted in Fig. 4.5. As expected, twenty periods are
shown in the figure, with a beginning of sharp temperature increase and an ending of
gradual temperature decrease. In Fig. 4.5(a) the temperature decrease is caused by
the convective boundary condition, which is specified as hy = 20 W/(m?°C) and Ty =
25°C, while in Fig. 4.5(b) the decrease is made by both the same convective boundary
condition as that in Fig. 4.5(a) and water evaporation and diffusion. When water
transport is not considered, skin temperature increases continuously with periodic
laser-heating and the peak temperature can go as high as about 160°C. On the other

hand, when water transport is considered, skin temperature increases gradually in the
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Figure 4.5: The temperature history in the center of the heated region on the skin
surface which is subject to periodic pulsed laser-heating for the time duration from 0
to 2 s. (a) Water evaporation and diffusion are not considered. (b) Water evaporation
and diffusion are considered.

first a few heating periods, then the rate of temperature increase slows down after the
temperature reaches a certain value, and the peak temperature is only about 100°C.

Temperature on the skin surface rises due to laser-heating, so the vapor pressure
near the skin surface is higher than that in the surrounding air. Due to the difference
of water vapor pressure, molecular water evaporates from the skin surface to atmo-
sphere. Consequently water content, sometimes called water density in this thesis,
near the skin surface is lower than that in the deep layers, thereafter liquid water
starts diffusing from inner layers toward skin surface. In the simulation, the initial
water content is assumed to be uniform in all the three layers of skin as 780, 000 g/m?
. Figure 4.6 presents the variation of water content in skin which is exposed to laser-
heating. As already shown is Fig. 4.3 that the resulting temperature distribution on
the skin surface is axisymmetric, the resulting water content distribution on the skin
surface is axisymmetric too, see Fig. 4.6(a). It is clear that the higher the temperature
the faster the rate of water evaporation on skin surface. This can also be observed

in Fig. 4.6(b), where the evolution of water content in the center point of the heated
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Figure 4.6: Water transport in skin due to temperature rise caused by periodic pulsed
laser-heating for the time duration from 0 to 2 s. (a) The distribution of water content
in skin in three-dimension. (b) Water content as a function of time at the point of
z=0.01208 m, y = 2 = 0 m.
region on skin surface is exhibited. Considering the slope to the curve expressing
water content as a function of time, larger ones are seen at the beginning phase and
smaller ones at the ending phase in each of the twenty periods of laser-heating [104].

Another observation is that temperature increase and water content decrease in
skin tissue are not symmetric, as shown in Fig. 4.7. To be clear, the heat diffuses
faster than the water in skin. For the same duration of 2 s, as deep as 0.003 m
of skin has witnessed temperature change, as can be seen in Fig. 4.7(a). On the
contrary, only as thin as 0.0001 m of skin is affected with water content, shown in
Fig. 4.7(b). This may be explained by some of the skin physical properties. According
to some references [2, 115, 120], the thermal diffusivity in skin can be calculated as
(=~ 1078 ~ 10" m?/s), which is about two to three orders of magnitude larger than
the water diffusion coefficient (D = 5 x 107 m?/s) [27, 70, 97].

Cryogen spray cooling (CSC) is an efficient tool to cool upper layers of skin dur-

ing laser therapy [2]. However, we will not discuss the application of CSC to some
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Figure 4.7: Temperature and water content as a function of x along the center line
(y = z = 0 m) at different time. (a) Temperature distribution. (b) Water content
distribution.

particular surgeries such as port wine stain laser therapy, but the general thermal
response of skin when CSC is used in the case of laser-heating. The effect of CSC
can be evaluated by regarding it as a form of convection with a large convective
heat transfer coefficient h (W/(m?°C)) and a coolant with low temperature 7} (°C).
According to published resources, the value of h is ranged from 1,000 to 100,000
W/(m?°C) [2, 126]. In our simulation, the convective heat transfer coefficient is cho-
sen as h = 2,000 W/(m?C), and the cooling temperature is chosen as T) = —26 °C,
which is the boiling temperature of liquid cryogen tetrafluoroethane, R-134a [1]. The
result is plotted in Fig. 4.8. Figure 4.8(a) shows 3D temperature distribution in skin,
and Fig. 4.8(b) is about the temperature variation as a function of z. As expected
the upper part of skin is deeply cooled, and the inner part is less affected. Results
with and without CSC is compared. Without losing generality, temperature along
the center line (y = z = 0 m) is plotted in Fig. 4.8(b), where the solid line indicates
the case that CSC is enforced, and the dashed line indicates the case that CSC is not

enforced but water evaporation and diffusion are considered. Since the temperature
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Figure 4.8: The thermal response of skin due to laser-heating when cryogen spray
cooling is considered. (a) 3D temperature distribution. (b) Temperature variation as
a function of z.

on the skin surface is much lower than normal body temperature, water evaporation
and diffusion may not need to be considered in modeling the thermal response of
laser heating when CSC is enforced. In fact, in the case of CSC, the skin temperature
may be even lower than the surrounding air temperature, thus possibly water may

condense on the skin surface [104].

4.7 Summary

A 3D multilayer model is proposed to investigate the transient thermal response
of skin subject to laser heating, and the impact of water evaporation and diffusion
on skin temperature evolution is also included based on the laminar boundary-layer
theory, which is used to determine the rate of water evaporation.

Both the time-dependent heat transfer equation and water transport equation are
discretized using the Crank-Nicolson scheme by a 7 point standard centralized finite
difference approximation. The stability of the numerical scheme is analyzed in terms

of physical requirement and a desired time step which guarantees a physically mean-
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ingful result is suggested. The resulting linear system is sparse and solved iteratively
with one of the fastest linear system solvers GMRES.

Based on the simulation results, skin temperature is significantly reduced when
water evaporation and diffusion are considered, especially in the upper part of the
skin, and the temperature on the skin surface is even lower than some inner part of
the skin. Thus, water transport moves a considerable amount of heat energy away
from the skin, plays an important role in skin temperature evolution, and needs to
be considered in modeling skin thermal response when external cooling is not used.

The cryogen spray cooling in laser surgery is modeled as well. It is found that
if cryogen spray is used to cool the skin under laser surgery, the temperature near
the skin surface is reduced much lower than normal due to the large convective heat
transfer coefficient and the low temperature of cryogen, and the influence of water
evaporation and diffusion may not be strong enough to be meaningfully considered.

The examples studied in the chapter are short-duration periodic high strength
laser source. In fact, the model can be used for any type of heating by simply

modifying the time function and using the actual form of heating source.

Copyright ©) Wensheng Shen 2007
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5 Thermal Injury Prediction with Strain Energy
5.1 Introduction

Skin performs a vital role in regulating the temperature of human body by serving as
the medium of heat transfer between the body and the environment. To be specific,
skin is composed of three layers: epidermis, dermis, and subcutaneous. Epidermis is
the outermost layer consisting of dead cells on the outermost level and deratinocytes
on the deepest level. Right beneath epidermis is the dermis layer, which consists of
blood vessels, elastic fibers, connective tissues, sweat glands, and nerves [80]. The next
layer is subcutaneous that contains larger blood vessels [73]. Blood flow is essential
in providing nutrients to dermis and subcutaneous and maintaining energy exchange
between skin and the inner parts. However, there are no blood vessels in epidermis
layer, and the corresponding heat and mass transport processes are conducted by
diffusion between dermis and epidermis.

Under normal conditions, thermal balance between human body and the envi-
ronment can be maintained and skin is at a comfortable temperature suitable for
its metabolic function [80]. Physiological abnormality or changes of environmental
conditions could influence the temperature distribution in skin and may even disturb
the existing thermal balance in human body. Skin burn is one of such cases in which
human body is exposed to high temperature or high heat flux environmental condi-
tion for a certain period of time, hence local skin temperature is raised high enough
to destroy the organic tissue and to cause injury.

Burn injury is one of the most common accidental injuries in human daily activi-
ties. According to some statistics, hundreds of thousands of people suffer from burn
injuries in the United States every year [95]. In 1999, the occupational injuries of
firefighters alone were as many as 88,500 in the United States [88]. The severity of

burn injury varies from minor damage in skin superficial layer to severe damage in
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deeper layers to even fatality. Skin burn injury may be classified based on skin phys-
ical structure as first degree with partial damage of epidermis, second degree with
total damage of epidermis and partial damage of dermis, and third degree with total
damage of epidermis, dermis, and partial damage of subcutaneous. It is important
to provide a quantitative connection between the surrounding thermal environmen-
tal condition and the degree of burn injury. Conducting such experiments directly
to collect data from human beings may not be feasible. On the contrary, computer
simulation using data from other biological bodies such as animals may be practical.

Current skin thermal injury model proposed by Henriques and Moritz [46, 73] is
based on the chemical process of protein denaturation. Skin endures thermal stress
and deformation due to temperature variation. Consequently strain energy may play
a role in further damage of skin. The aim of this work is to investigate the effect
of strain energy on skin thermal injury. In particular, a three-dimensional (3D)
numerical model is developed to predict the transient temperature distribution in
skin tissues with the consideration of water evaporation on the skin surface and
water diffusion in the tissue. Thermal stress and deformation of skin is modeled
using Duhamel-Neuman equation, strain energy is then obtained by the stress-strain
relation, and skin thermal injury is evaluated based on the proposed model including
strain energy. Finite difference method is used to discretize the 3D PDEs, and the

resulting linear systems are solved iteratively.

5.2 Thermal Stress and Deformation

One of the destructive mechanisms for thermal damage of soft tissue is thermal in-
duced high mechanical stress. To study the thermal induced deformation in soft
tissues at high temperature, the thermoporoelasticity model is used in which stress,

strain, and temperature are related. The constitutive relation describing the elastic
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deformation of the soft tissue may be expressed as [136]

o ciit c2 ci3 0 0 O Egx B
Oyy Co1 Cp c3 0 0 O Eyy B
O | _ | €31 €32 c33 0 0 O €z | _ | B
T | =10 0 0 cu 0 0 || v o L0 G
Txz 0 0 0 0 Cs5 0 Yz 0
| Ty _0 0 0 0 0 ce6 | | Yy | _0_

where o is the normal stress, 7 the shear stress, € the normal strain, v the shear

strain, and 6 the temperature difference. The coefficients in Eq. (5.1) are [14]
1-v
(1-2v)1+v)’

(1-2v)(1+v)

C11 = Co2 = C33 =

C1g = Cg1 = C13 = (€31 = C23 = C32 =

14

C44 = C55 = Cp — ma

and
Fo
1—20v

8=
Other symbols in Eq. (5.1) are F Young’s modulus, v Poisson’s ratio, and « thermal

expansion coefficient. Strain is related to deformation by the following expression,

[ Eus ] o g 0
Eyy 0 dy g |' Uy '|
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where, uq, ug, and uz are displacements in x, y, and z directions respectively. From

Eqgs. (5.1) and (5.2), the following equilibrium equation is obtained,

2 2

1 — 2v 0x; ax,
where u is the displacement vector, and G is the shear modulus given by

E

G:m.
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The thermal induced stress has been investigated and discussed in [101], here we focus
on the deformation energy and its effect on skin thermal injury. After obtaining the
stress and strain tensors, the unit strain energy can be computed according to the

following expression,
59595

1 €2z

Emech, = §V [wa Oyy Ozz Toy Txz Tyz] 5 3 (54)
Ty

Yz

Vyz

in which V is the molar volume of skin tissue.

5.3 Thermal Injury Prediction

A quantitative description of skin thermal damage due to high temperature exposure,

suggested by Henriques and Moritz [46, 73], is the following

a0 AE
o CoP <_ RT(x,t)) ’ (5:5)

where ( is the pre-exponential factor, AF is the activation energy for the reaction,
and R is the gas constant. The temperature is determined by Eq. (3.1) and the
environmental conditions. The constants and parameters used in this model are: at
the epidermis layer, ¢ = 3.1 x 10% (s71), AE = 627.9 (kJ/mol); at the dermis layer,
¢ =4.32x10% (s7'), AE = 418.6 (kJ/mol) for temperature 44 < T < 55 °C, and
¢ =9.39 x 101 (s71), AE = 669.8 (kJ/mol) for temperature T > 55 °C [120, 130].
Integrating Eq. (5.5) over the period of burn, the total accrual of thermal injury as a

function of position within the tissue is

Q= /0 Cexp (_%) dt. (5.6)

In the case of skin burn, soft tissues are subject to thermal stress, which may cause
possible tissue deformation. Intuitively, tissue may be more easily damaged under

such.a-conditions.That is, tissue protein denaturation may happen at relatively small
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activation energy E in Eq. (5.6). Therefore we propose the following integral equation

to estimate the local accrual of thermal injury

. ; AFE — Emech

where E,,.., is the mechanical energy defined by Eq. (5.4).

5.4 Numerical Algorithm and Solution Procedure

According to the proposed model for predicting skin burn injury, Egs. (3.1), (4.14),
(5.3), and (5.7) have to be solved at the same time. The corresponding algorithm is

listed below.

1: Set t:=0,n:=0

2: Assign initial values to T, w(©® 40 QO

3: Initialize values at level n: T « TO ™ @ 4™ — 4O QF) QO

4: while t < t.,q do

Solve Eq. (3.1) iteratively for 7(+1)

Solve Eq. (4.14) iteratively for w1

Solve Eq. (5.3) iteratively for (")

Compute stress and strain tensors from Eqs. (5.1) and (5.2)

Compute unit strain energy from Eq. (5.4)

10:  Compute the accrual of thermal injury from Eq. (5.7)

11:  Assign values as: T « T+ ()  op(ntD) g g+ Q)  Qntl)
t:=1+ At

12: end while

In the above algorithm both Egs. (3.1) and (4.14) are discretized using Crank-
Nicholson finite difference scheme. Eq. (5.3) is not time dependent and is discretized
using a second order 19 point finite difference scheme. Using Eq. (3.1) as an example,

the following expression can be derived,

ey 1
T = §Q.AT”+1 + EOtATn + Sn+1/2. (58)

Here At is the time step, A the finite difference approximation of the elliptic operator,

and S the source term. The truncation error of the scheme is of order O(At? + h?).
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Eq. (5.8) may be written in a matrix form as,
A A
([ _ O‘TtA> T — ([ + %A) T" + aAtS" /2, (5.9)

For each of Egs. (3.1), (4.14) and (5.3), a sparse linear system, denoted by Az = b, can
be obtained from the discretization. They are solved iteratively using the fast iterative
solver GMRES, accompanied with an ILUT preconditioner [93]. Note, in the GMRES
method, the required storage grows quadratically with the number of iterations. So
the number of iterations should be confined to not a big one. Practically, A restarted
version of GMRES is employed as GMRES(10), where 10 is the dimension of the
Krylov subspace, so that GMRES is restarted after 10 iterations. An incomplete
LU factorization with a dual dropping threshold (ILUT) is used to speed up the
convergence rate of GMRES. The ILUT preconditioner makes use of a dual dropping
strategy that is represented by two parameters p and 7, where p is the number of fill-in
elements, and 7 is the dropping tolerance. In our computation, we used p = 40 and
7 = 107*. Instead of the original linear system Az = b, an equivalent one M ~'Ax =
M~1bis solved in the preconditioned iterations, where M is the ILUT preconditioner.
More information about the GMRES solver and the ILUT preconditioner can be found

in [94].
5.5 Numerical Experiments and Discussions

A 3D view of the skin structure is depicted in Fig. 4.1, where from the top to the
bottom, each layer is shown as the epidermis, the dermis, and the subcutaneous in
order. As can be seen in Table 4.1, the thickness of each layer is epidermis 8.0 x 1075
m, dermis 0.002 m, and subcutaneous 0.01 m [120]. For the convenience of simulation,
the area of interest on the skin surface is assumed to be a square with a dimension
of L =W = 0.015 m. One of our major interests for conducting this research is to
investigate the instant thermal mechanical response in each of the three skin physical

layers.and.evaluate.the degree of burn injury. Due to the extreme thin thickness of

70

www.manaraa.com



the epidermis layer, uniform grid may not be appropriate. The grid points are hence
distributed as 10 intervals in the epidermis layer, 40 intervals in each of the dermis
and subcutaneous layers, which gives a mesh size in the z direction as Az = 8 x 10~°
m in the epidermis layer, Az = 5 x 107 m in the dermis layer, and Az = 2.5 x 107
m in the subcutaneous layer, as listed in Table 4.1. Along the y and z directions,
equally spaced 50 intervals are assigned. That gives a mesh size of Ay = Az = 0.0003
m. Such a small Az puts a constraint on the determination of time step At, which is
chosen as At = 0.001 s. The criterion for determining At is presented in the previous
chapter. With this arrangement, a total of 90 x 50 x 50 grid intervals are resulted.
The number of unknowns resulting from discretizing Egs. (3.1) and (4.14) is therefore
213,689 each, and the corresponding number of nonzeros in the coefficient matrix
is 1,473,577. Since there are 3 components at each grid points, a discretization of
Eq. (5.3) gives 641,067 unknowns.

This work differs from others [27, 75, 120, 130] in predicting skin thermal injury
by including the effect of mechanical energy resulting from thermal induced stress and
deformation, and interpreting the tissue damage as stages of mechanical response and
chemical reaction. In the stage of mechanical response, soft tissue is under thermal
stress and has deformation energy, which can further affect the ongoing chemical
reaction process by possibly lowering the activation energy. The model is general in
simulating various thermal burning processes of biological tissue by easily modifying
the heat source term in Eq. (3.1). Using this skin burn model, a few numerical
experiments have been conducted, including laser therapy, flash light, and steam
burn, which are discussed below.

Laser Therapy As a means of treatment to dermatological patients, laser ther-
apy has been widely used due to its apparent advantages over conventional surgeries
[119]. As an example, dye lasers can be used to selectively damage some microvas-

culature in human skin [4]. Laser therapy, however, may cause possible side effects
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and complications because of unintentional heating of the adjacent healthy tissues.
This example studies the tissue damage of laser type heat source exposure. The heat
transfer due to laser heating may be approximated by a Gaussian type heat source, as
shown in Egs. (4.2) and (4.3). It is assumed that skin under investigation is subject
to laser heating every 0.1 s with a duration of 0.005 s, and the time step is chosen
as At = 0.001 s. The parameters of the Gaussian shaped laser beam corresponding
to Eq. (4.2) are P = 12 W, W = 0.0025 m, and p, = 80, 2.4, and 1 mm ! in the
epidermis, dermis and subcutaneous regions respectively.

Skin damage occurs when the temperature at the base of the epidermis layer
reaches above 44°C'. The rate of burn injury is said to be second degree if the
accumulated integral of €2 is greater than 1. A burn injury is third degree if the
temperature at the base of the dermis layer reaches above 44°C and the accumulated
integral of € is more than 1 [46, 120]. The thermal response of skin subject to laser
exposure is shown in Fig. 5.1. Fig. 5.1(a) is the temperature distribution at the base
of epidermis layer for a period of 50 s. Fig. 5.1(b) is the consequent strain energy
due to tissue deformation. Figs. 5.1(c) and 5.1(d) are the corresponding results of
the accrual damage without and with the consideration of the mechanical energy. It
can be seen that after 50 s the damage contour of (2 with level 1 is at r < 0.0021
m when the mechanical energy is not considered and at r < 0.0022 m when the
mechanical energy is considered. That is to say that for the same laser power and
exposure time, more area is subject to the second degree burn when the mechanical
energy is considered. In other words, less time is needed for the second degree burn.
Fig. 5.2(a) is the contour plot of the accrual damage at the base of the dermis layer
for an exposure time of 200 s. The threshold of the third degree burn, the damage
contour with level 1, is at the location of ry = 0.001 m when the mechanical energy is
not considered. It is at the location of r; = 0.0012 m when the mechanical energy is

considered. Any place inside the circle of r = r( is considered to have a third degree
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burn. It can be found by a comparison between Figs. 5.1 and 5.2 that an inclusion
of the mechanical damage affects more for the third degree burn prediction than for
the second degree one. This may be partially due to the relatively small value of the
activation energy AF in Eq. (5.7) in calculating the accrual damage of the dermis
layer for temperatures of 44 < T < 55 °C.

It can be seen from Fig 5.1(b) that in this particular case the calculated strain
energy is less than 1,000J/cm?®, which is small compared with the activation energy
AFE in Eq. (5.7). The strain energy can be large, however, in certain circumstances.
It is observed from Eq. (3.1) that the tissue temperature is related to the parameters
of oy = k/(pC), ae = wpCo(T, — T)/(pC), and a3 = Q/(pC), where a1, g, and
a3 denote the effects of thermal properties, blood flow, and external heat source on
temperature variation respectively. In most skin burn injury cases, the influence of ay
may be negligible due to its relative small quantity compared with a3. Since the skin
thermal properties are assumed to be constant, the temperature distribution is solely
determined by the external heat flux. It is assumed that mechanical properties are
constant as well, then tissue displacement is solely determined by the temperature
derivatives, as shown in Eq. (5.3). Thus if the external heat source a3 is extremely
large, a large temperature derivative will result, which leads to large tissue displace-
ment, stress and strain tensors, and mechanical energy. Consequently, the influence
of mechanical deformation on tissue damage may be significant.

Note, in order to display the results more clearly, only part of them, i.e., 0 <y <
0.005 m and 0 < z < 0.005 m, is shown in Figs. 5.1 and 5.2(a), and the accumulated
damage () is scaled to €' by Q' =1+ 1gQ.

Flash Fire Flash fire can be simulated using the current model by modifying Eq. (3.1).
The body exposure to flash fire is assumed to be uniformly distributed, so the prob-
lem can be treated as one-dimensional. This can be achieved by specifying symmetric

boundary conditions along the border of the region under investigation, i.e., y and z
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Figure 5.1: Two-dimensional temperature and accumulated damage plots for laser
heating with a Gaussian profile. (a) Temperature (°C) distribution at the base of
the epidermis layer after 50 s. (b) The contour of mechanical energy (J/cm?®) at the
base of the epidermis layer after 50 s. (c¢) The contour of accumulated damage at the
base of the epidermis layer after 50 s without the consideration of mechanical energy.
(d) The contour of accumulated damage at the base of the epidermis layer after 50
s with the consideration of mechanical energy. Note: in Figs. 5.1(c) and 5.1(d) the
accumulated damage is scaled to Q' =1+ 1g Q.
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Figure 5.2: Contour plot of accumulated damage at the base of the dermis layer after
200 s. (a) Mechanical energy is not considered (b) Mechanical energy is considered.
Note: the accumulated damage is scaled to ' =1+ 1gQ.

directions, and uniform heat flux on the skin surface. The current model is used to
predict the time to second degree burn for a number of exposures with the intense
heat flux ranging from 4.186kW/m? to 41.86kW/m?. This can be achieved easily
by modifying the local heat source in Eq. (3.1) as Q, = C, where C is a constant
corresponding to the actual heat fluxes being tested. It can be seen from Fig. 5.3 that
the present results agree well with the published ones [120]. The predicted time to
the second degree burn falls between the experimental data given by Stoll and Greene
[113] and the closed form solution provided in [45]. For the same exposure intensity,
our results predict more time than the finite element model by Torvi and Dale [120].
This may be due to the fact that water transport is considered in our model, which
removes some of the incoming thermal energy and tends to decrease the degree of
thermal damage.

Steam Burn As an example, steam burn is also studied. The physical process differs
for different type of burns. Laser burn and flash burn have the same nature of rela-

tively high pressure on the skin surface and possible water evaporation and diffusion
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Figure 5.3: Time to second degree burn at the base of skin epidermis.

from skin surface to the environment, while steam burn is different. We model steam
burn by adjusting the source term to include condensation. Since condensation is the
reverse process of evaporation, we may implement this by changing the sign of Q.
and Qg in Eq. (3.1). Due to the lower pressure at skin surface, water molecules moves
from hot air toward it. The movement of vapor molecules slows down on skin surface,
since temperature on skin is lower than the steam temperature. A thin layer of liquid
film is formed on the skin surface. Heat transfer from steam to skin is via this thin
film. Assume steam heat transfer to skin can be modeled as film condensation on a

vertical plate, the heat transfer to skin surface may be written as [49]
Q = BLA(Tsat - Ts)a (510)

where () is the heat transfer rate from steam to skin, 7, is the temperature of

saturated vapor, the convective heat transfer coefficient is

B —C [gpz(pz - pv)k?ff} v
,Ull(Tsat - TS)L

in which C is a constant, g the gravitational acceleration (m/s?), p, the density
of liquid water (kg/m?), p, the density of saturated water vapor, k; the thermal

conductivitymof liquid, water (W/(mK)), H the latent heat of vaporization (J/kg),
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which is a function of temperature, y; the viscosity of liquid water (kg/(sm)), and
L the characteristic length (m). In applying Eq. (5.10) to find the temperature
distribution in skin, T is not known, which has to be solved iteratively with Eq. (3.1).
The latent heat of water condensation is temperature dependent, which is expressed
in a polynomial from least-squares data fitting based on the tabulated data from [63].
All liquid phase properties are evaluated at the film temperature Ty = (Tyo + 1) /2.
Part of the solution is shown in Fig. 5.4 as compared with that of Ng and Chua’s
[75] for the prediction of the third degree burn. For the same steam temperature, our
model predicts that more time is needed for the third degree burn. It is worth noting
that the threshold for a third degree burn in their model is at temperature above 44
°C at the base of the dermis layer, while in our model it is the accumulated damage

of Q2 =1 for temperatures over 44 °C.
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Figure 5.4: Predicted time to the third degree burn for various steam temperature.

5.6 Summary

A 3D model is developed to investigate the skin injury caused by thermal exposure
with the consideration of deformation, which may introduce strain energy. The model

is based on the consideration of Penne’s bioheat equation for skin thermal response,
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Duhamel-Neuman equation for thermal stress and strain calculation, and Henriques’
suggestion of Arrhenius equation for the skin damage prediction. A numerical algo-
rithm is presented to solve those equations in sequence. It is found that strain energy
lowers the activation energy for protein denaturation, and thus tends to give a pre-
diction of shorter time for both the second and the third degree skin burns. But the
effect may not be significant in the tested cases, so skin burn prediction without the
consideration of deformation energy is still a reasonable approach. However, if the
external heating source is extremely large, mechanical energy may play an important
role in predicting skin thermal injury.

This model can be easily adapted to simulate burns of various thermal exposure.
In particular, a number of numerical experiments have been conducted including laser
type heating source, flash fire, and steam exposure, which are typical thermal burns.
Our model tends to predict longer time for skin thermal damage. This may be due
to the fact that water evaporation is considered in modeling the skin heat transfer
process. Water evaporation takes away some of the heat, which cools skin surface.

Finite difference method is used to discretize the PDEs involved in the model,
which gives an accuracy of second order in space. For the time dependent problems,
Crank-Nicholson scheme is used such that second order accuracy is achieved in time
as well. Preconditioned iterative method is used for fast solution of the resulting

sparse linear systems.

Copyright © Wensheng Shen 2007
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6 Steady and Unsteady Diffusion Flame Solver

6.1 Introduction

Diffusion flames are frequently encountered in practical combustion devices, such as
jet turbines and commercial burners [110, 132, 133, 83]. A desired combustion device
should be efficient in energy transfer and produces few pollutants. Studying the
mechanism of diffusion flame is very helpful in achieving the goal of high efficiency
and low pollution combustion. With the improved computing capability of computers,
numerical simulation plays an increasingly important role in exploring the mysteries
of physical world, such as multi-dimensional diffusion flame, which combines fluid
flow and chemical reaction. The governing equations of diffusion flames are strongly
coupled and characterized by the presence of stiff source terms and nonlinearities
[28]. Previous studies have shown that Newton’s method is extremely efficient in
solving the coupled nonlinear system of equations arisen from combustion [110, 132,
133, 10, 11, 31]. This work also applies Newton’s method for the simulation of steady
and unsteady laminar diffusion flame. The unsteady laminar diffusion flame was
solved by Mohammed and others [72]| using the primitive form of the Navier-Stokes
equations and one-sided difference to avoid staggered grid, and it was solved by
Bennett and Smooke [11] using vorticity-velocity formulation of the Navier-Stokes and
local rectangular refinement. This work also applies the vorticity-velocity formulation
of the Navier-Stokes equations to the simulation of diffusion flames, but different from
[11], the unsteady flame is solved on a single non-uniform mesh without local grid
refinement. The efficiencies of obtaining the steady-state solution by solving the state-
steady Navier-Stokes and obtaining one by solving the time-dependent Navier-Stokes

are compared.
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6.2 Laminar Diffusion Flame Model

The laminar diffusion flame model consists of two parts: the gas flow and chemical

reaction. The gas flow is simulated using Navier-Stokes equations, and the chemical

reaction is simulated by the one-step chemical reaction flame sheet model [110, 132,

133, 28|. These two mechanisms are introduced below.

6.2.1 Vorticity-Velocity Formulation

Assuming the gas is a Newtonian fluid that obeys Fick’s law of diffusion, the com-

pressible Navier-Stokes equations can be applied for the simulation of fluid flow in

diffusion flames. In particular, the newly emerged vorticity-velocity formulation of

the Navier-Stokes is used to avoid staggered grid discretization, which is normally

required for solving the primitive variable form of the Navier-Stokes equations, due

to the appearance of the first-order derivative terms of pressure. The transport equa-

tions for unsteady non-reacting flow can then be written in vorticity-velocity form in

the axisymmetric coordinates as [31, 77]:

0 Pu Pu Ow 10u wu

or \ p ot or?2  0z2 0z ror r?
40 (uaerv@) =0,

ar \por ' poz
9 (1op) O v 0w 10u
0z \ p ot or? 022 0or roz
0 (udp wvop\
*o: (5or *522) =©
Ow dp Opou 0Opdv O (uw) 0*(uw)
Pt TYot "ozt oror T o | 02
0 (uwy = 0w ow  puw
+§(7)_p“az+p”az r

+@2 u? + v? +@ . 0 u? 4+ v?
0z Or 2 or g 0z 2

2
+2(a“a (v i) - L2 (v ) 8“8“>

or 0z 0z Or ~ 0rdz or
5 (62u8u 0% Ov N 0 @)

or2 0z 0220r 0rdzoz

80

(6.1)

(6.2)

(6.3)

www.manaraa.com



The above equations are respectively the equations of radial velocity, axial velocity,
and vorticity, where u is the radial velocity, v is the axial velocity, w is the vorticity,
defined as w = % — %, p is the density, u is the viscosity, V- is the divergence of the
velocity vector U = [u U]T, and g is the gravity vector € = [g, ¢,]7. The divergence

of the velocity vector in the axisymmetric coordinates is,

ou u Ov

= — . 4
V-d 6r+r+8z (6.4)

The component of g in 7 coordinate is ignored, and only the g, component is consid-
ered. Note that the energy equation is not included in the above system of Navier-
Stokes equations, as it is not solved explicitly. Instead, a conserved scalar equation is
introduced and the temperature field is obtained from the conserved scalar, which will
be discussed later. The density is computed using the perfect gas law as a function of
the pressure. The flow’s small Mach number allows the pressure to be approximated
as a constant [31, 110, 132], and the density of the gas can then be approximated
as p ~ %, where pgi, is the atmospheric pressure, W is the average molecular
weight of the gas, R is the idea gas constant, and 7" is the temperature of the gas.
The pressure field is then eliminated from the governing equations as a dependent
unknown, and it can be recovered once the numerical solution of the governing equa-

tions is obtained [31], by solving a Laplace equation derived by taking the divergence

of the momentum equations.
6.2.2 Flame Sheet Model

We use the flame sheet model for simulating the chemistry in diffusion flame. The
flame sheet idea was proposed by Burke and Schumann [15] and later used by many
researchers [76, 110, 132]. The flame sheet model is a good benchmark problem for
testing the performance of particular numerical methods, and also can be used as
an initial guess for the computation of more detailed chemical reaction flows. In a

diffusion. flame, the reaction rate is determined by the rate at which the fuel and
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oxidizer are brought together in proper proportions [110]. Under the flame sheet
model, the chemical reaction in a diffusion flame can be described by a one-step
global irreversible reaction, and the reaction is assumed to be infinitely fast and
limited to a very thin exothermic reaction zone, in which the fuel and oxidizer react
in stoichiometric proportion. Such a simplified model makes the simulation relatively
easy by separating the fuel and oxidizer with no fuel on the oxidizer side and no
oxidizer on the fuel side. Due to the existence of concentration gradients in the flow
field, both the fuel and oxidizer diffuse toward the thin reaction zone. In the presence
of an inert gas, the reaction of the fuel and oxidizer in the flame sheet model can be

described in the form [133]

vpYp +1v0Yo + UnYy = vpYp + UnYy, (6.5)

where Yz, Yo, Yp, and Yy are the mass fractions of fuel, oxidizer, product, and
inert gas respectively, and vg, vp, vp, and vy are the stoichiometric coefficients of
the reaction. To further simplify the model, we assume that thermal diffusion is

negligible, the specific heat, ¢, is constant, the mass diffusion obeys Fick’s law, and

A A A
> pDpcyp’ pDocp’ pDpcy’

the Lewis numbers of all the species, which are defined as and

A

PPaey where, A is the thermal conductivity of the mixture, Dgr, Do, Dp, and Dy are

the diffusion coefficients of the fuel, oxidizer, product, and inert gas, are equal to unity.
The energy equation and the transport equations of species become mathematically
similar by the above simplifications [132]. A scalar variable, conserved scalar, is
introduced such that the temperature and the mass fraction of species are related
to this variable. The solution of the energy equation and the species equations can
be formulated from the conserved scalar, which is described by the following time-

dependent convection-diffusion type of equation [110, 133]

oS oS oS 10 0S 0 oS
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This source-free convection-diffusion equation expresses a balance between convection
and diffusion of the conserved scalar, which has a desired feature that it is conserved

exactly throughout the domain.
6.2.3 Boundary Conditions

To simulate the axisymmetric laminar diffusion flame, the Navier-Stokes equations
and the conserved scalar equation are expressed in the axisymmetric coordinates,
which include a radial direction and an axial direction, and they are set as horizontal
and vertical directions respectively in this work. The boundary conditions for the

Navier-Stokes equations and the conserved scalar equation can be summarized as

v

,arzo,wzo,andg—fzo;atthe

[28]: at the axis of symmetry (r = 0): u =0
outer zone (r = R): % =0, % =0,w= %, and S = 0; at the inlet (z = 0): u =0,

v=2"(r), w =2 -2 and S = 5°r); at the exit (z=L): u=0, % =0, & =0,

and Z—S = 0.
Z

6.3 Newton’s Method

Newton’s method is used for the computation of non-reacting viscous and invis-
cid flows combining with finite difference discretization [24, 125]. It was used by
Smooke’s group [110, 133, 31, 11, 77| to successfully simulate the laminar diffusion
flame. Newton’s method is particularly robust in solving coupled nonlinear equations,
such as those describing reacting flows. Theoretically, the Newton iteration converges
quadratically under certain sufficient conditions, which means that the magnitude of
the residual is squared with each Newton step so that it tends to zero very quickly.
The disadvantage of Newton’s method is that the size of the Jacobian matrix formed
is extremely large and it is difficult to find a good initial guess. It has been reported
[110, 132] that the formation and solution of the numerical Jacobian matrix constitute
the major part of the computation. In order to stabilize the convergence at an early

stage of the iteration and to save computing time, the damped Newton’s method is
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used. For convenience, the full and damped Newton iterations are briefly introduced
below.

The Newton’s method for a system of equations can be derived from multi-variable
Taylor expansion. Let F'(u) = 0 be the system of equations in residual form, obtained
by discretizing the governing differential equations, the Taylor expansion of the left-

hand side, F'(u), about the current location u” is [57]
F(u*™") = F(u*) + F'(u*) ("™ = u*) + O ("' = u*)?) (6.7)

where, F is the nonlinear vector residual function and u is the vector of unknown de-
pendent variables. By using the condition of F'(u) = 0, i.e., Eq. (6.7), and neglecting

the second-order terms, the standard Newton iteration can be constructed as
JH)ou* = —-F@b), k=01,.., (6.8)

or

vt =uf +ouf =+ IWHTIFWE), k=01, (6.9)

where J = F’ is the Jacobian matrix, and % indicates the k-th Newton iteration. The

damped Newton’s method is consequently written in the following form:
J(u")ou* = -NF(F), k=0,1,.., (6.10)

or

utt! = uf 4+ NESu® = v — N I(uF) T F(Wb), k=01, (6.11)

where \¥ is the k-th damping parameter, taking as 0 < A\¥ < 1. The Jacobian matrix
in Egs. (6.8) ~ (6.11) is computed numerically through the following procedure [132].
For the flame sheet model and the vorticity-velocity formulation of the Navier-Stokes
equations, the unknown vector consists of four components, i.e., u = [u; uy u3 ug)”

with w1 = u, us = v, us3 = w, ugs = S. We also denote the residual vector with four
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components F = [F} F, F3 F;]". At each point (4,5), there is a corresponding dense

square block with dimension of 4 x 4,

o o 0 o
OF or, oF, oF, OF
I ou ou du duy (6 12)
oa | oh orh ot or |- :
o o 0 o
oF, OF, oF 0
Ouy Ouy Ouz Ouyg

Each element in the above 4 x 4 block is evaluated by the finite difference approxi-

mation [132],

OF; _ Fi(u; + 0u;) — Fi(uy) (6.13)
8uj 5uj , |

where du; is a small perturbation of the j-th component of the unknown vector u,
which is calculated as du; = ou; + 3, where o and 8 are typically taken to be the
square root of the machine unit round-off error.

The Newton iteration is terminated when the 2-norm of the difference of the
unknown vector between two consecutive iterations satisfies the pre-determined con-
vergence tolerance. To be specific, following the procedure described in [31], we scale
each of the four dependent variables such that each of them is of a size similar to the
others of equal importance, and the 2-norm of the discrete vector du™ can be written

as [31]

ni mn2 n3 2
5u”|| = %ZZZ(aikaun), (6.14)

i=1 j=1 k=1
where N = ninyns, a; is the scaling factor of the k-th component of the unknown
vector, and n1, ny, and ns are the number of points in r-direction, the number of points
in z-direction, and the number of elements of the unknown vector u respectively. For
the Newton iteration, the convergence is achieved when ||6u”|| < 107*. In each of
the Newton iteration, the inner linear system is solved by a Krylov type linear solver

with preconditioners.

85

www.manaraa.com



6.4 Finite Difference Approximation and Linear Solver

The discretization method adopted in the present study is finite difference on a non-
equispaced mesh. The Navier-Stokes equations in vorticity-velocity formulation and
the conserved scalar equation include first-order linear and nonlinear derivatives,
second-order derivatives, and second-order cross derivatives. Different discretization
strategies are applied to ensure numerical accuracy and stability. Due to the existence
of second-order cross derivatives, a nine-point finite difference stencil is employed for
the two-dimensional axisymmetric laminar diffusion flame. For the time-dependent
problem, we use an implicit finite difference technique, which earns a saving of 3
orders of magnitude fewer time steps to complete the transient process [11].

Both the first-order linear derivatives and the second-order derivative terms are
discretized using central difference. Using non-uniform mesh, for example, the fol-

lowing finite difference formulations can be obtained,

Ow _ Witl,y — Wi—1,5

) 6.15
or Tiv1,j —Ti-1,5 ( )
0%u _ 2 (UHLj—Um__UM“—W—u> (6.16)
Or?  Tiy1j—Ticj \Tiv1j — Tij  Tij —Tim1j )

o (100 (524 55 ) (s = o)

ar \ por (Tit1j = Tig) (Tir1j — Ti-1,5) (6.17)

Ui—1,j Yi,j .
( Pi,j + Pi—l,j) (pzaj pl—17.7)

(rij — Tic1j) (g1 — Ti1)

The first-order nonlinear derivative terms, such as convective terms, are discretized

using a monotonic upwind approximation [110, 111],

du ”%J+%100” Uiy — Ui—1,5
p a pZ,j max L . .
/r 2y 7‘17 1,.7

(” Vi + UH—LJ 0“ Uij — ui-l-l,j)
max )
Tit1,j — Tiyj

(6.18)
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where ||a, b||;mas is the operator of taking the maximum of ¢ and b. The second-order
cross derivatives are discretized using the corner points on the standard nine-point

stencil,

(Tivry — Tiy) (Zivr — Zij)
Z:ij(ﬂr—Lj+1"/%—1J—1)

(riv1y — 7ig) (Zigry — Zij)

0 (vip\ _ Z:ij (Pit1,j11 = Pit1,j-1)
or \ poz

(6.19)

For terms involving both the temporal and spatial derivatives, they are discretized
using second order backward Euler scheme for temporal derivative and central differ-
ence for spatial derivative, as shown in Eq. (6.20). For the boundary part, at x = 0,
second order three point forward difference is used, and at x = R, second order three

point backward difference is used.

2o =207 +3e0c _ Soitl 207 4300
T T1
9 (10p) _ [ P (6.20)
or P ot (7“1'4_1 —Ti_l)At

After writing the governing equations in discrete form, the partial differential equa-
tions are transformed into N coupled nonlinear algebraic equations, where N equals
the product of the number of unknowns and the number of mesh points in the compu-
tational domain. The resulting system of equations, written in residual form, is solved
by the damped Newton’s method. The Newton Jacobian matrix is ill-conditioned,
and a fast linear solver based on bi-conjugate gradient stabilized (Bi-CGSTAB) [123]
method combined with a block Gauss-Seidel preconditioner [31] is used to solve the
linear system. The Bi-CGSTAB is developed for non-symmetric matrix, and each

iteration requires two matrix-vector products and four inner products.

6.5 Results and Discussion

Numerical solutions for the steady-state and unsteady-state methane/air diffusion jet
flames are obtained and are presented in this section. The configuration of the jet

flow.is.similar to those reported in [72]. The fuel jet and the coflowing oxidizer jet
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Figure 6.1: A sample 9-point grid.

are co-centered, where the inner fuel jet has a radius of R; = 0.2 ¢cm, and the outer
oxidizer jet has a radius of Rp = 2.5 cm. The fuel is nitrogen-diluted consisting of
CH, and N,, where the mass fraction of C Hy is about 0.52. The oxidizer is the air,
where the mass fraction of O, is 0.232. Both the fuel and the oxidizer are set with
a velocity of v; = vo = 35 c¢m/s. The computational domain expands from 7 = 0 to
r = 7.5 cm in the radial direction and from z = 0 to z = 30 c¢m in the axial direction,
such that the radial dimension of the domain is much larger than the radius of the
coflowing oxidizer jet, Rp, and the axial dimension of the domain is much larger than
the flame length [72], L;. The computational domain is covered by a non-uniformly
distributed mesh of size 129 x 161. Using the simplest 3 x 3 mesh as an example
(shown in Figure 6.1), for the 9 point stencil, the structure of the Jacobian matrix is

presented in Eq. (6.21).

EE EBE
EEEEEEN
EE EBE
EE EE HEBR
J= EEEEEEEENBEN (6.21)
EE EE HEBN
EE EE
EEEEEEN
] EE NN

As mentioned in section 6.3, there are four dependent variables, u, v, w, and S, so
each element in the above matrix contains a 4 x 4 dense block, as shown in Eq. (6.12).
Let n., n,, and n, denote the number of components, the number of points in the
radial direction, the number of points in the axial direction respectively, then the

number,of rows.0rthe, number of unknowns is n. X n, X n,, the maximum number of
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nonzero elements in each row is 9 X n,, and the maximum number of nonzeros in the
Jacobian matrix is 9 X n? x n, x n,. For a 129 x 161 mesh and four components, the
number of unknowns is 83,076, and the number of nonzeros is 2,990, 736.

Following the flame sheet model, the one-step irreversible reaction for the methane/air

diffusion flame can be written as [10, 133],
Z/CH40H4 + 1/0202 + N2 — ]/H2OH20 + 1/002002 + NQ, (622)

where the stoichiometric coefficients vey,, vo,, Vu,0, and vep,, are taken as 1, 2, 2
and 1 respectively. We use this equation to recover the temperature and the mass
fraction of major species. Under the assumption of infinite rate chemistry, the re-
action zone becomes infinitely thin under the stoichiometric condition [76]. In three
dimensions the infinitely thin reaction zone forms a surface called stoichiometric sur-
face. The combustion domain has been separated into two parts: the fuel side where
oxidizer is absent and the oxidizer side where fuel is absent. At the stoichiometric
surface, the mass fractions of both fuel and oxidizer are zero, i.e., You, = Yo, = 0,
so the stoichiometric mixture fraction is constant there. The conserved scalar is also
constant at the stoichiometric surface, which can be determined as [133]:

1

1+ Weco,vco, (Yomr,)s
Wenyven, (Yoo, )o

S, = : (6.23)

where the subscripts s, o, and f indicate the stoichiometric surface, oxidizer side,
and fuel side respectively. We have to keep track of the location of the stoichiometric
surface to determine the scopes of fuel side region and oxidizer side region, since
different mechanisms are used in computing the temperature and the mass fraction

of major species in different regions. For example, on the fuel side, we have

W,
T =1sS+ (To + (YCOQOQM) (1-9). (6.24)
Cp I/VOQI/O2
Wem,v
Yor, = (Yom) ;S + (Yo,)og - 74(S = 1), (6.25)
0:V0,
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and on the oxidizer side, we have

T=T,(1-5)+ (CQ(YCH4),» + Tf> S, (6.26)
P
W 2 2
Yo, = (Y0,)o(1 = 5) — (YCH4)fﬁS- (6.27)

The mass fraction of other species can be obtained in a similar way, as presented in
(132, 133]. In Egs. (6.24) ~ (6.27), @ is the heat release per unit mass of the fuel,
¢p the specific heat of the mixture, W the molecular weight of each species. In the
transport equations and the conserved scalar equation, fluid properties, such as the
viscosity, the mixture density, the mixture diffusivity, are temperature dependent.
After the temperature is obtained, the related properties can be found as follows.
The temperature dependence of viscosity is approximated by the power law [133]

= o <%> , where Ty = 298 K, r = 0.7, and o = 1.857 x 10°* gm/cm. From

Pr

the definition of the Prandtl number Pr = &2, we obtain the relation of & = R

A
A

The Lewis number is assumed to be one Le = ohe
4

= 1, and we further obtain
pD = % = $-, where ) is the thermal conductivity of the mixture, and the Prandtl
number is taken as Pr = 0.75.

The nonlinear coupled equations of the combustion problems are very difficult to
solve. Special techniques are needed for the convergence of the numerical solution as
well as the savings in computational cost. A good initial solution guess is absolutely
necessary for the convergence of the Newton’s method and very important for fast
solution of the iterative process. In the studies reported in [28, 31], the initial solution
guess for the axial velocity and conserved scalar is approximated according to the
boundary conditions. Such approximation, however does not affect the final steady-
state solution due to the applications of pseudo-time process adopted by [110, 133, 31]

and relatively small time steps. Therefore, in the current investigation, for both

steady-state and unsteady-state diffusion flames, the initial guess is set to zero for
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u, v, and S, and 298 K for 7. Newton’s method is used to linearize the original
equations, and the Newton iteration is considered to have converged if the 2-norm
of the difference of the scaled dependent variable, defined in Eq. (6.14), is less than
1.0 x 107*, and Bi-CGSTAB is considered to have converged when the 2-norm of the
scaled residual vector is less than or equal to ;5 of the Newton tolerance [31].

The steady-state solution is obtained using a three-level multigrid method [28, 31]
with the finest mesh of 129161 and coarsest mesh of 33x41. In pseudo-time stepping,
the steady-state solution can be achieved by first marching the unsteady process until
the solution is within the convergence domain of the steady-state solution, then to
start the full Newton process. The steady-state temperature distribution is shown in
Figure 6.2, and the obtained maximum axial velocity and temperature are 2.63 m/s
and 2050 K respectively, and the total CPU time on a Sun-Blade-100 machine with
a single 500 MHz SPARC processor and 2 GB memory, is 11.8 minutes. The number
of linear iterations is 559, 1097, and 1568 for levels 1, 2, and 3 respectively, where
level 1 is the coarsest level and level 3 is the finest level.

The time-dependent solution is computed on a single non-uniform grid 129 x 161.
The evolution of the laminar diffusion flame with time is presented in Figure 6.3,
which shows the development of flame temperature profile in the early stage of a
flame. At ¢t = 0.125 s, the obtained temperature profile of the flame is close to the
steady-state solution, with the highest temperature of 2050 K and the highest axial
velocity of 2.61 m/s. It is found that 50 times more CPU time is needed to get a
steady-state solution using the unsteady-state equations than that using the steady-
state equations with the pseudo-time approach. This is because, in the former case,
we solve the unsteady-state equations on the finest mesh only and the new Jacobian

matrix is computed in each time step.
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Figure 6.2: The temperature profile obtained from the steady-state equations for the
diffusion flame.
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Figure 6.3: The dependency of flame temperature on time: (a) ¢t = 0.025 s, (b)
t=0.05s, (¢c) t=0.075s, (d) t =0.1s, and (e) t = 0.125 s.
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6.6 Summary

We simulate laminar diffusion flame numerically by considering methane and air as
the reaction input. For the flow part, we use the vorticity-velocity formulation of
Navier-Stokes equations, and for the chemical part we use a simplified one equation
flame sheet model with infinite rate of chemical reaction. The coupling between the
fluid flow and chemical reaction is through a so-called conserved scalar equation. Even
though the very simple one equation chemical reaction model is used for the flame
problem, reasonable results are obtained. This indicates that the Newton’s method
is very efficient for the simulation of coupled highly nonlinear physical processes such
as the complicated combustion problems. The steady-state solution is obtained by
solving the steady-state Navier-Stokes equations using multigrid V-cycle algorithm
with Bi-CGSTAB as the linear solver preconditioned with GS, or to run the time
dependent Navier-Stokes equations until the solution between the consecutive time
steps is small enough. It is found that it is more efficient to obtain a steady-state solu-
tion from the steady-state Navier-Stokes equations than to get one from the transient

Navier-Stokes equations in terms of computational cost.

Copyright © Wensheng Shen 2007
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7 Protein Transport in Capillary with Competitive Binding and
Signaling

7.1 Introduction

Angiogenesis, the physiological process in the growth of new blood vessels from pre-
existing vessels, is required for proper development, normal physiology, as well as
wound healing for all organs of the body. It is also critical for tumor growth. Tumors
require a blood supply to grow from microscopic size to macroscopic size [37]. Cells
are unable to be nourished properly beyond an oxygen diffusion distance of about 200
pm and therefore require blood vessels in their vicinity. This can be accomplished by
the growth of capillaries. The process begins with the degradation of existing matrix
and the migration of endothelial cells into the areas to be vascularized, followed by
proliferation of endothelial cells and formation of capillaries. The formed capillaries
are initially blind-ended, but eventually open themselves to become functional blood
vessels, in a not well-understood process. The growth of endothelial cells and tumor
cells can be stimulated or inhibited by certain molecules. Basic fibroblast growth
factor (FGF-2), a soluble protein, is such a stimulator that acts from cell surface to
affect the growth and differentiation of a wide range of cell types, such as endothe-
lial, mesodermal, and ectodermal. It has been involved in processes ranging from
wound healing to tumor growth [29]. The growth factor binds to its cell surface
tyrosine kinase receptors, as well as heparan sulfate proteoglycans (HSPGs) on cell
surfaces. The activity of FGF-2 binding to its receptors is significantly reduced in
cells that do not express heparan sulfate [33]. Under normal conditions, the levels
of FGF-2 in extracellular matrices and circulation are relatively low, which can be
substantially elevated in cases of disease and cancer conditions. It has been found
that FGF-2 is crucial for normal developmental processes such as limp bud formation
[89], instrumental in blood vessel growth, and directive in creating new vessel sprouts

(89, 32]. For example,in the congenital disease hemangioma, a vascular disease char-
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acterized by uncontrolled overgrowth of blood capillaries, increased concentrations of
FGF-2 have been detected in circulation. One of the most effective treatments for
hemangioma is interferon alpha, an FGF-2 inhibitors [78]. The temporal and spatial
distribution of FGF-2 in extracellular matrices and circulation is elemental to normal
development as well as disease control. The concentration of FGF-2 can be regulated
by some heparan binding proteins.

The role of heparan sulfate in modulating FGF-2 receptor binding has been the
subject of many studies. Lovich and Edelman [68] performed computational simula-
tions of heparin deposition and distribution in local vascular system. In their paper,
the diffusion of heparin in tissue was considered, while the heparin binding kinetics
was relatively simple. Lovich et al. [69] studied transvascular transport, investigated
the role of diffusion and convection on arterial heparin deposition by administrating
the perivascular and endovascular aspects of calf carotid artery in vitro and the rabbit
iliac artery in wvivo, and found that arterial thickness played a very important role
in determining the balance between diffusive and convective forces. A quantitative
model of diffusion and convection, however, has not been established in their paper.
Dowd et al. [29] analyzed the transport of FGF-2 through Descemet’s membrane
(DM), the basement membrane of the corneal endothelium. In their study, the diffu-
sion of FGF-2 through the interstices of the membrane was considered, coupled with
fast, reversible association of FGF-2 to resident heparan sulfate chains. Forsten et
al. [39] suggested an overall mechanism describing heparin-mediated activities. That
mechanism includes heparin and growth factor binding, heparin and growth factor
receptor binding, and their couplings with the number of heparin binding sites on a
given cell type. Fannon et al. [33] used the same model as Forsten et al. [39] to pre-
dict the potentiation and inhibition of FGF-2 binding by heparin. They reported that
FGF-2 binding as well as FGF-2-induced signaling and mitogenic response was sensi-

tive to HSPG and heparin within a range of physiologically relevant concentrations.
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They also found that the stimulation and inhibition of FGF-2 by heparin might result
from differences in doses and time courses used in various studies. Recently, Forsten
et al. [40] published a more complete model about the kinetics of FGF-2 binding to
heparin sulfate proteoglycans and MAP (mitogen-activated protein) kinase signaling.
Their model suggests that FGF-2, its receptor, and a heparan sulfate proteoglycan
interact simultaneously to form a high-affinity complex. The heparan sulfate chain
could act by binding both FGF-2 and its receptor, facilitating the FGF-2-receptor
interaction. In this manner, the cell surface proteoglycan and receptor could each
bind FGF-2 and then come together to form a stable complex, as well as some com-
pound dimers. The growth factor binding models published by Forsten and Fannon
(39, 33, 40] were developed to describe a static tissue culture dish type environment
in which fluid flow and mass transport were not involved.

In many #n wvivo situations, the transport and binding of FGF-2 is closely related
with circulation. This paper describes a general mathematical model and provides
efficient numerical methods for simulating the binding of a ligand L (FGF-2) simul-
taneously and competitively to two different binding sites, FGFR and HSPG, located
on the surface of a capillary, under flow condition in vitro. The basic model for sur-
face reactions that we have used are works by Forsten [39, 40] and Fannon [33, 34],
in which FGF-2 is the only ligand in the solution, binding sites FGFR and HSPG are
assumed to locate only on the surface of capillaries. As illustrated in Fig. 7.1, FGF-2
binds to FGFR and HSPG to form complexes of FGF-2-FGFR and FGF-2-HSPG,
the resulting complexes may continue binding to produce either their dimers or FGF-
2-FGFR-HSPG complex, and the FGF-2-FGFR-HSPG may further bind each other
to generate FGF-2-FGFR-HSPG dimers. Consequently, the concentration of FGF-2
in the solution is greatly affected due to molecular binding [134].

A coupled nonlinear convection-diffusion-reaction model for simulating heparan

sulfate chain regulation over the growth factor binding under flow conditions is pro-
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Figure 7.1: Sketch of growth factor binding to receptors and HSPG and the formation
of various compounds on the surface of a capillary. The symbols in the sketch are
as follows: L=FGF-2, R=FGFR, P=HSPG, C= FGF-2-FGFR complex, G=FGF-
2-HSPG complex, Co=FGF-2-FGFR dimer, G;=FGF-2-HSPG dimer, T=FGF-2-
FGFR-HSPG complex, and To=FGF-2-FGFR-HSPG dimer.

posed here. This model provides the computational infrastructure needed to study
the effects of heparin and heparan sulfate on growth factor-binding within the biore-
actor system, to simulate the media flow system in capillaries n vitro, and to evaluate
the effect of competing growth factor-binding proteins on cell surface under flow con-
ditions. The model could serve as a prototype for the more advanced simulation of
growth factor-binding to receptors as well as heparan sulfate chains in circulation in
vivo. In particular, the model is used to predict the time-dependent distribution of
FGF-2 in a capillary with complicated binding kinetics on the tube surface.

Three types of physical processes are included in this coupled nonlinear model: the
media flow, the transport of proteins in the flow, and the chemical kinetics of related
proteins. These processes are simulated by incompressible Navier-Stokes equations
for media flow, convection-diffusion transport equations for species conservation, and
kinetic equations for molecular binding. The flow is considered independent of species
transport and surface binding processes and is computed separately. After the flow
field has been obtained, we solve the transport equation, where the velocity field is
considered known. Since in the current basic model, the molecular binding of FGF-2
to binding sites is assumed to take place on the tube surface only, we may model the

process as mass transport in a pipe with chemical reaction boundary conditions [134].
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7.2 Incompressible Navier-Stokes Equations

The blood flow in human vascular system is frequently considered as incompressible
[16, 26]. Thus in the current simulation in vitro, a bioreactor system, the flow of
media, which is essentially water, is also regarded as incompressible. Due to the par-
ticular geometry of the vascular system, it is more convenient to write the governing
equations in cylindrical coordinates. Assume the flow in the vascular system is ax-
isymmetrical and laminar, a 3D problem can be reduced to a 2D equivalent one. In
cylindrical coordinates, all derivatives with respect to the circumferential direction
are zero and the three velocity components are functions of the axial and radial di-
rections only. If circumferential flow is not considered, the governing equations can
be further simplified. The 2D time-dependent equations for mass and momentum in
conservation form for incompressible flow in an axisymmetric coordinate system can
be written as:

The mass conservation equation

ou u Ov
— Nl
or + * ox =0, (7.1)

the radial momentum equation

6u 8u 8p 1 a 87—7'58
pat Fpugs U = pgr = ot o (PTe) + 5 (7.2)
and the axial momentum equation
ov ov ov op 10 0Tz
P P TP =P i U Y gy (73)

In Egs. (7.1) ~ (7.3), p is the density, u is the radial velocity, v the axial velocity, p the
dynamic pressure, g, and g, the radial and axial components of gravity respectively.
The stress tensors 7,,, Trz, and 7, are 7,, = 2;;?)—“:, Trg = u( + g’r’), and 7., =
2/1%. For a Newtonian incompressible flow, the viscosity u is a constant. In general,

however, the blood flow is considered non-Newtonian, and existing non-Newtonian
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blood flow models can be found in open literatures, such as the Carreau model [19, 51]
and the power law model [19]. Our current simulation is focused on the flow of media,
endothelial cell culture, not blood in a bioreactor, and a constant viscosity is assumed.

Finite volume method [81, 62] has been widely used in solving both steady and
unsteady fluid mechanics problems, for it is easy to implement and guarantees flux
conservation. To be specific, cell-centered finite volume approach is applied to dis-
cretize the partial differential equations. The advantage of cell-centered arrangement
is that second order accuracy is achieved, since the nodal value represents the mean
over the control volume and the node is located at the centroid to the control volume.
The Navier-Stokes consists of a set of coupled nonlinear partial differential equations,
the solution of which is not a trivial task, and we adopt the SIMPLER algorithm
[81, 35] in the current computation. To solve the Navier-Stokes equations, two loops
are required, the inner iteration handles each of the individual equations of momen-
tum and energy, and the outer iteration deals with the coupling and nonlinearity.
For unsteady flow using implicit discretization, the discretized linear equations need
not be solved very accurately at each outer iteration. Usually a few iterations of a
linear solver is enough. More accurate solution will not reduce the number of outer

iterations but may increase the computing time.

7.3 Transport Equation of FGF-2

The transport equation of FGF-2 consists of two mechanisms, convection and dis-
sipation. The convection term describes transport of local components along the
streamlines of the flow, co-moving with the particles of the fluid. The velocity field
of the flow is solved for as described above and is assumed not to be affected by the
protein transport. The dissipation term describes diffusive transport of components
due to gradient. The local concentration of a component changes with pressure dif-

ference, gravitational forces, and viscous dissipation. The mass of each species must
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be conserved. In the existence of chemical reaction, the coupling of mass transport

and chemical kinetics in a circular pipe can be described by the following equations

[134]:

a¢i+13(m¢i)+a(v¢i) _ 10 <K 3¢i)+2 <K 9¢i

= — ; < <
ot r Or or ror T@r or w8x>+FZ(¢1 On) 1<iZm,

(7.4)
where ¢; is the concentration of species ¢, u and v are the radial and longitudinal
components of velocity, K, and K, the molecular diffusion coefficients, and F; the
rate of change due to kinetic transformations for each species 7. Since in the current
basic model, only one species, FGF-2, is placed in the flow, so here ¢; is simply FGF-
2. Molecular binding happens only on the tube surface, that is to say F; is valid
merely on the pipe surface. The reactants and products involved in the chemical
kinetics include FGF-2, FGFR, HSPG, FGF-FGFR complex and its dimer, FGF-
HSPG complex and its dimer, FGF-HSPG-FGFR complex and its dimer, with a
total of nine species (n = 9). The detailed chemical kinetics of these species will be

discussed in the Section 7.4. The boundary conditions of Eq. (7.4) are

09;
or

09;
or

= fi(t,z,C;) at r=R, =0 at r=020. (7.5)

The first boundary condition accounts for interactions at the vessel wall (R is the
radius of the capillary and f; the rate of binding to cells), while the second boundary
condition reflects the axial symmetry.

Transient solution is pursued in the current simulation. To achieve higher order
time accuracy, we use a quadratic backward approximation for the time derivative
term. Such arrangement gives us second order time accuracy. In the transport equa-
tion, the convective term needs special treatments for stability consideration. A
frequently used technique is upwind differencing [62]. However, upwind discretization
provides only first order spatial accuracy. For the sake of numerical stability as well

as higher order spatial accuracy, a deferred correction numerical strategy is used here
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[35], which is a combination of the first order upwind differencing and the second
order central differencing. The diffusive terms are discretized by central difference.
Due to implicit discretization of the governing equations, a linear system is formed
and needs to be solved efficiently at each time step. The finite volume expression of

Eq. (7.4) may be written as:

3(pd) " — 4(pd)s + (pg) "
At

+ (Je = Jw) + (Jn — Js) = Sc + Spdp + Ssym-  (7.6)

where J, ., 5 s is the convection-diffusion flux at each of the four interfaces of the con-
trol volume P, with J, ., = Fey — Dew, Jns = Fns— Dp s, Sc and Sp are the results of
source term linearization. Using deferred correction [35], the convective flux is written
as a mixture of upwind and central differences Fe,, = Fy, + A(Fy,, — F¢,)°, where
F* = max((pv).Ar;,0.)¢p + min((pv)eAr;,0.)¢g, Fr = max((pv),Ar;,0.)ow +
min((pv),Arj, 0.)pp, FE = (pv) Arj(1 — ae)dp + (pv) Arjoedr, FS = (pv),Ari(1 —
y)Pw + (pv)wArjo,¢p, A is a parameter setting as A = 0 ~ 1, and the super-
script (°) indicates taking the value from the previous iteration, which will be taken
to the right hand side and treated as a part of the source term. The same can
be applied to convective flux in radial direction F,, = F + A(F¢ — FY), where
F' = max((pu),Az;,0.)¢p + min((pu),Az;,0.)¢y, F¥ = max((pu)sAx;,0.)ds +

min((pu)sAx;, 0.)pp, FS = (pu)nAzi(1 — o) op + (pu)n Az oy, FE = (pu)sAz;(1—

as)os + (pu)sAx;aspp. The interpolation factors are defined as a, = ﬁ, Oy =

Ipfu g, = "™ and qp = 2" The diffusion fluxes are D, = Xe'¢E—¢r) (Yp—¢p)

P—Tw TN—TP Tp—TS ITE—ZP

D, = 7K“7Z(¢ip_¢v"), D, = Krzilon—9r) anq D, = Kr2ilér—9s) The notations of spatial
P—TW TN —Tp rTp—Tg

discretization in Eq. (7.6) is illustrated in Fig. 7.2, where the uppercase letters indi-
cate the center of the control volumes, and the lowercase letters indicate the interfaces
between neighboring control volumes.

Substituting everything into Eq. (7.6) and collecting terms, a set of algebraic
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Figure 7.2: Finite volume notation of control volumes in axisymmetrical coordinates.

equations are obtained, which is in the following form

Asps + Awow + Apdp + Ardr + Anon = b. (7.7)

The coefficients of Eq. (7.7) consist of a pentadiagonal matrix, and they are given by

Ag = —max((pu)sAz;,0.) — %, Aw = —max((pv),Ar;,0.) — %, Ay =

min((pu)n A, 0.)— K82 Ay = min((pv)Ar;, 0.)— 2202 and Ap = 22 8E

(Aw~+As+Ap+Ay). The right hand side vector is given by b = (Sc+Sp)rpAz; Arj+

n n—1
(42'%’25 - S ) rpAz;Ar; — N(F¢— F* — FS + F+ FS— F* — F¢+ F*). The banded

matrix is solved by Stone’s strong implicit procedure (SIP) [114], a special kind of

incomplete LU factorization.

7.4 Competitive Binding Kinetics

The change of concentration with respect to time for various species may be described
by a set of ordinary differential equations (ODEs) in terms of mole or mass fraction.
FGF-2 binding involves a series of molecular activities, including binding to receptors,
HSPG, and some intermediate complexes. Some models have been proposed to reveal
the related chemical kinetics [32, 39, 40] by examing the role of low-affinity receptors
on high-affinity receptor binding. It is usually assumed that each cell has a homo-

geneous distribution of FGF receptors (R) and heparan sulfate proteoglycan binding
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sites [39]. Synthesis of receptors and surface HSPG as well as internalization of un-
bound receptors, surface HSPG, and FGF-2 complexes are considered as well. The
internalization process is modeled by a first-order chemical kinetics, and the inter-
nalization rates are based on experimental measurements obtained previously using
Balbc/3T3 [32] and vascular smooth muscle cells [112]. Synthesis of receptors and
HSPG is considered constitutive and based on steady-state levels of surface molecules
and the turnover rate for unbound receptors/HSPG. Available binding sites are based
on data from the literature for cultured endothelial cells and indicate a difference of
two orders of magnitude in binding sites (1.6 x 10* high affinity sites vs. 1.6 x 108
low affinity sites) [34, 40].

In the current work, only the base model is considered. The base model assumes
a single signaling species of HSPG, which is written as HSPG in the model, as de-
scribed in an early work by Forsten et al. [40]. There are eight chemical reactions in
the model and nine species are involved. A directed graph is used to represent the
reaction network of molecular binding in the base model, as shown in Fig. 7.3. In
the directed graph, the species involved in the reactions are represented by vertices,
and the reactions are represented by directed edges. The number of edges, however,
does not necessarily equal to the number of reactions, since there may be more than
one reactants and/or products in a single reaction. The internalization of FGFR,
HSPG, FGF-2-FGFR, FGF-2-HSPG, FGF-2-FGFR, dimer, FGF-2-HSPG, FGF-2-
FGFR-HSPG, and FGF-2-FGFR-HSPG dimer is included in the directed graph as
well [134].

The model is based on mass-action kinetics describing binding interactions be-
tween FGF-2 and FGFR and HSPG. The detailed chemical kinetics is based on the
work done by Forsten et al. [40] and is re-illustrated in Table 7.1 for convenience.
There are eight reactions and three of them are reversible. These reaction equa-

tions show the synthesis of FGFR and HSPG and surface coupling between FGF-2
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Figure 7.3: The reaction network for the base model. The same symbolic representa-
tion of the species as in Fig. 7.1 is used here. Only single signaling HSPG is considered
in this model. Single arrowheads indicate an irreversible reaction and double arrow-
head indicate a reversible reaction. Both FGFR and HSPG can mediated signaling
through T [40].

bound complexes. The remaining eight reaction equations exhibit the internalization
of bound and unbound FGFR and HSPG. To minimize the complexity of this prelim-
inary model, we assume that each binding site is independent, and no clustering of
sites are involved. Taking mass balance of each of the nine components in the reaction
network, a system composed of a set of nine nonlinear ordinary differential equation
is obtained, shown in the Appendix. Using FGF-2-HSPG as an example, the change

of FGF-2-HSPG concentration with time in the base model can be described as

dG
== kf LP — kJ'G — keRG — kcG? 4 2kyGo — kimiG, (7.8)

where k}%LP is the production of FGF-2-HSPG due to the binding of FGF-2 to
unbound HSPG, —kG is the dissociation of FGF-2-HSPG to FGF-2 and HSPG,
—k.RG is the loss due to surface coupling of an FGF-2-HSPG complex with unbound
FGFR, —k.G? is the loss due to the formation of FGF-2-HSPG dimers, 2k,.G> is the
increase due to the dissociation of FGF-2-HSPG dimers, and —k;,,;G is the loss due
to internalization. The remaining eight nonlinear ordinary differential equations can
be found in the Appendix.

The set of nine equations shown in the Appendix are obtained from the reactions

in Table 7.1, and they indicate the local rate of protein concentration change due
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Table 7.1: Chemical reactions included in the base model using mass-action kinetics
and their relevant parameters.

Chemical reaction

Reaction rate Parameters

k‘R
!
L+R C kF[RIL], kF[C) kf =2.5 x 10°M ™ 'min~", £ = 0.048min~"
k‘R
K
L+P G kf[PIL], k7[C] kF = 0.9 x 10°M ™ 'min~", £ = 0.068min "
ky
ke
R+G——>T kc[R][G] ke = 0.001min ! (#/cell) *
k
C+P— T k.[C][P] ke = 0.001min"" (# /cell) !
ky
T——>L+R+P kI [T kI = 0.001min !
C+Ce—=0C, ke[CP2, kue[Ca] ke = 0.001min ' (#/cell) !, kye = lmin~!
kuc
G+ G ——=G, ko[G?, kuc[Go] ke = 0.001min~! (#/cell) ™!, Ky = 1min~!
T+T——=T, ke[T1?, kuelT] ke = 0.001min 1 (#/cell) !, kye = Imin !
kuc
kint kint
R—>Rint; P——P,; kmt[R]a kmt[P] kint = 0.005min !
kint kint .
C—>Cipt; G——>Gip kint[Cl; kint|G] kint = 0.005min~!
Kint ki ‘
T——>Tipy; Co——Co, , int[T); kP2,[C5] kint = 0.005min"1; kP, = 0.078min !
ki%t kZD"t D D D : 1
Gy, T Ty KinelGal; Kiny[T2] kine = 0.078min™
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to biochemical reactions. For the coupled nonlinear ODE system with time ¢ as the
sole independent variable, our initial try using a fourth-order standard Runge-Kutta
method was not successful. The failure may due to the nonlinearity and stiffness
of the ODE. We then turn to a stiff ordinary differential equation solver using the

backward differentiation formulation [12].

7.5 Numerical Procedure

The problem involves the solution of a coupled PDE system, i.e., the incompressible
Navier-Stokes equations and the convection-diffusion transport equation. The numer-
ical procedure of solving the PDE system is illustrated in Algorithm 10, where the
outmost loop is a time loop, followed by a while loop to control nonlinear iteration.
We use second-order backward implicit scheme for time discretization, hence data
need to be saved at time ¢t — 2 and t — 1. We take the maximum residual of u, v, and
p to determine the convergence of the coupled nonlinear system. Since the concen-
tration of ligand is very low, about 107! M, we may assume that the transport of
protein will not affect the media flow. As such, we first obtain the flow field by solving
the coupled nonlinear Navier-Stokes equations, where the velocity and pressure are
decoupled by a SIMPLE like algorithm [81], then seek the solution of the transport
equation. For each of the four equations, u, v, p, and ¢, a linear system of five diago-
nals needs to be solved. Several different fast sparse matrix solvers, including Stone’s

ILU, BICGSTAB, and GMRES have been tried.

7.6 Results

7.6.1 Media flow in artificial capillary

Endothelial cells cultured under chronic shear stress have been shown to form a mono-
layer, stop dividing, orient to the flow of medium, and form tight junctions [13]. The

FiberCell™ bioreactor is especially designed for the long-term culture and study of

endothelial cells.under, flow. The heart of the bioreactor system is a hollow fiber car-
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Algorithm 10 Algorithm for Incompressible Flow and Mass Transfer
while ¢ < t4,, do
Save data at time ¢ — 2, (u,v, )2 + (u,v, ¢)"!
Save data at time t — 1, (u,v,¢)" ! < (u,v, @)’
while outerlter < outlter,,,, do
solve for u
solve for v
solve for p
residual = Max(residual,, residual,, residual,,)
if residual > largeNumber then
exit “Diverge”
else if residual > convergenceCritiaria then
Continue
else
Break
end if
end while
solve for ¢
end while

tridge containing coated fibers on which cells can be cultured [79]. The microprocessor
controlled pump can be programmed to produce consistent and defined amounts of
shear stress by regulating the flow of medium over the cells allowing a more phys-
iologic environment for cell growth. Both arterial and capillary flow patterns can
be simulated by regulating the pump system to generate steady and pulsatile flows.
Current study is more interested in the capillary flow in each of the coated fibers.
The parameters of the FiberCell bioreactor are as follows, the radius of an individual
fiber R = 0.35 mm, the fiber length L = 10 cm, the number of tubes or fibers per
cartridge N = 20, the flow rate » = 80 ml/min, which corresponds to an average
velocity of 0.1732 mm/s. The viscosity is taken as u = 0.04 dyne - s/cm?, and the
density of the fluid is taken as p = 1060 kg/m? [71].

The numerical solution of medium flow is obtained by the 2D incompressible
Navier-Stokes equations, discussed in Section 7.2, and presented in Fig. 7.4. Given
the velocity, dimension and medium properties, the Reynold number is less than 1,

and the flow in capillary is essentially laminar. Fig. 7.4(a) is the contour plot of
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Figure 7.4: Visualization of laminar flow in part of the artificial capillary within
x =0~ 0.005 m. (a) Flood plot of velocity u. (b) Vector plot of velocities u and v.

steady-state axial velocity inside the tube. In order to reveal the flow development
in the tube entrance, only a small part of the flow is visualized, i.e., x = 0 ~ 0.005
m. Fig. 7.4(b) is the corresponding vector plot of the axial and radial velocities. The
velocity distribution in the artificial capillary is very well predicted by the current
incompressible code. This claim is supported by a comparison of u velocity profile in
the fully-developed region between the numerical and analytical solutions. For a fully-
developed laminar flow in a circular pipe, the velocity profile can be found analytically
as U = Umag (1.0 — E—Z), where U = 2.0 X Ujpes- The numerical and analytical
solutions agree very well with each other, as shown in Fig. 7.5. The numerical solution
presented in Figs. 7.4 and 7.5 is obtained by the following boundary conditions: a
uniform flow velocity of u = 0.0001732 m/s at the tube entrance, non-slip boundary

condition on tube surface u = v = 0, symmetric boundary condition along the tube

centerline v = 0 and g—:f = 0, and extrapolation of velocity by zero gradient at flow
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Figure 7.5: Comparison of velocity profile of fully-developed laminar flow in a circular
pipe between numerical and exact solutions

exit ug = up.

The accuracy of the numerical solution depends very much on the mesh size.
Idealy, the numerical solution should be very close to the exact solution of the PDEs
in a very fine mesh. However, due to the limited computing resources and the fact
that a too small grid spacing may cause unexpected numerical difficulties, using an
extremely fine mesh may not be a good strategy. A practical way of achieving enough
numerical accuracy is to find a so-called grid-independent solution by the method of
try and error, in which we fine the mesh continually until the results between the two
consecutive tries are very close. Fig. 7.6 shows the dependency of numerical solution
on mesh size. To be specific, three types of mesh size are used, 1200 x 20, 1400 x 24, and
1600 x 24, where the number of control volumes in the axial direction is taken as 1200,
1400, and 1600, and the number of control volumes in the radial direction is taken
as 20 and 24, respectively. Figs. 7.6(a) to 7.6(e) are the concentration distribution of
FGF-2 along the capillary surface at the time of 5, 10, 20, 40, and 60 minutes, where
triangles represent the results of mesh size 1200 x 20, solid line represents the results
of mesh size 1400 x 24, and circles represent those of mesh size 1600 x 24. It is clear
that the numerical solutions for the two cases of 1400 x 24 and 1600 x 24 are close
enough to be considered as grid-independent. Therefore, in the rest of the chapter,

all numerical results are obtained on the mesh size of 1400 x 24.

109

www.manaraa.com



A 1200x20 A 1200x20
— 1400x24 H 0.9 — 1400x24 H
O 1600x24 O 1600x24
] 0.8k ]
1 0.7r ]
] 0.6- ]
] 05k ]
] 0.4k ]
] 0.3k ]
] 0.2k ]
] 0.1k ]
‘ o 0 ‘ ‘ Poppn
0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12
(a) (b)
A 1200%20 "
09 — 1400%24 || A 1200x20
. 2 O 1600x24 — 1400x24
| 0 1600x24 ||
st | 0.9
0.7r 1 08¢ 1
0.6 1
0.71 q
05 1
06 ]
04r 1
05 1
0.3r 1
A
02 . . . . T 04 L . . . 7
0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12

(c) (d)

A 1200x20
0.957 — 1400x24
O 1600x24

0.9r

081

0.75p

0.651

0.61

05 . . . .
0 0.02 0.04 0.06 0.08 0.1 0.12

()

Figure 7.6: The dependency of numerical solution on mesh size, (a) at t = 5 minutes,
i (c) at t = 20 minutes, (d) at ¢ = 40 minutes, and (e) at ¢t = 60
es, solid line, and circles represent numerical results of mesh

24, and 1600 x 24 respectively.
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7.6.2 Ligand transport and binding at 4 °C

The transport equation is solved after the velocity in it has been obtained by solving
the Navier-Stokes equations. The boundary conditions applied to the convection-
diffusion equation are as follows. At the tube entrance, a uniform concentration of
¢ = 5.556 x 107! mol is prescribed. At the centerline of the capillary, symmetric
boundary condition g—‘f = 0 is used. At the outlet, we extrapolate the concentration of
ligand by zero gradient % =0, i.e., op = ¢p. At the tube wall, a reaction boundary

condition is implemented to reflect the growth factor binding. On the tube surface,

the conservation equation for the growth factor FGF-2 can be written as

o¢
ot

+n-|F|=¢G (7.9)
where ¢ is the concentration of FGF-2, |F|| denotes the diffusion flux through tube
surface, n is the unit vector normal to the surface and pointing from liquid to tube
surface, and G is the surface differentiation rate due to biochemical reaction.

On the tube surface, a system of simultaneous ordinary differential equations is
obtained from the set of biochemical reaction equations, in the form of mass action
kinetics. Let vector y be the species populations in the chemical reaction networks,

Yy = [y1 ¥2 - -+ yn|T, the vector notation of the system of ordinary differential equations

may be written as

% = f(y,1). (7.10)

Using backward differencing formulation (BDF), Eq. (7.10) is solved by finite differ-
ence as

y' =y" T+ Atf(y"). (7.11)

If all equations are linear, we may replace f(y) with f(y) = Ay, where A is the
coefficient matrix, and we can use a matrix vector product to find the rate of change

of the concentration of relevant species due to a series of reactions, and the ordinary
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differential equations can be solved directly. The solution of the linear system is then
found to be
y" = (I — AtA)~'y" L (7.12)

where [ is the identity matrix.
For a nonlinear system of equations, the solution of Eq. (7.11) is more complicated.
Newton’s method is frequently used to solve nonlinear system, and the solution of

the nonlinear system is
Y=y 4+ At (I - AtJ) Ty (7.13)

where J is the Jacobian matrix, which is calculated as J = g—; to linearize the system.
Since the Jacobian matrix J is generally not constant, at each time step, we need
to evaluate matrix J and compute the inverse of the matrix I — At¢J. The Jacobian
matrix can be evaluated either analytically or numerically. Analytical Jacobian is
always preferred, since the computation of analytical Jacobian matrix is both numer-
ically more accurate and computational more efficient. For the nonlinear nine species

base model, Eqs. (8.1)~(8.9), the corresponding Jacobian matrix is,

[ aii kﬁ k; 0 0 —ch —k?R i
kjlch 929 Qkuc 0 0 —ch 0 0 kjlczR
0 k.C  ags 0 0 0 0 0 0
k.G k.P 0 aga  2kye k.C k.R 0 0
J = 0 0 0 kT ass 0 0 0 0
0 —]CCP 0 kz 0 (077 0 —kfc)P
—k‘cG 0 0 0 0 k}jL (02drd 2kuc k}D
0 0 0 0 0 0 k.G ass 0
| —kPL/K) KR/K 0 K'/K 0 —kPL/K kP/K 0 gy
(7.14)

where a;; = —k?L — k.G — kipg, a9 = —kf — kP —2k.C — ki, a33 = —kye — king,
g = —kI' = 2kT — kiny, as5 = —kue — king, 066 = —kf L — k.C — kiny P, a7y =
—KF = kR — 2k,G — hinty G5 = —hue — kinsy agy = —(kFL + kPP)/K, K = NV,
N =6.02 x 102, and V = 10-°.
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The nonlinear system of ordinary differential equations is solved by the VODE
solver [12], which can handle both stiff and nonstiff systems. VODE uses a variable-
coefficient form of BDF method. In the stiff case, the Newton iteration is relaxed by
a scalar factor. VODE provides a flexible application programming interface (API)
through two external subroutines, FEX and JEX, where FEX allows users to provide
a set of rate equations from chemical kinetics, the right-hand side vector f(y,t),
and JEX allows users to calculate analytical Jacobian matrix. Users also have to
specify initial values of the system, as well as some parameters, such as relative and
absolute tolerances, the lengths of real work array and integer work array. In the
current computation, the relative tolerance is set as 10~%, and the absolute tolerance
is species dependent, i.e., each species may have its own absolute tolerance. We
use BDF method with user-supplied full Jacobian, so the size of the work array is
calculated as LRW =22+ 9 x NEQ + 2 x NEQ?, and the size of the integer work
array is specified as LIW = 30 + NEQ, where N E() is the number of equations to
be solved. To start with, /ST AT FE must be set to 1 in the VODE solver.

Let us first simulate FGF-2 binding and signaling in media flow at 4°C, and it
is experimentally assumed that there is no internalization at 4°C. To satisfy this
condition, some parameters in the 9-equation base model have been set to 0, k;;; =
kP, = 0. The computational results of FGF-2 concentration have been scaled with
respect to the uniformly specified inlet boundary concentration, L' = L/Ly, where
Ly = 5.5556 x 10! and presented in Fig. 7.7. Initially, there is no ligand in the
solution. To start with, at ¢t = 0, we enforce the boundary condition of L = Ly at the
tube entrance. The time-dependent solution of FGF-2 concentration corresponding
to flow inlet velocity of v = 0.0000866 m/s at t = 5, 10, 20, 40, and 60 minutes is
shown in Figs. 7.7(a) ~ 7.7(e) in the form of color-filled contour plot. Ligand has
been transported into the flow by convection and diffusion. At ¢ = 5 minutes, ligand

is observed in only a small portion of the tube. At ¢ = 10 minutes, ligand occupies
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Figure 7.7: Visualization of ligand transport in the capillary at the condition of 4°C
and inlet velocity v = 0.0000866 m/s, (a) at ¢ = 5 minutes, (b) at ¢ = 10 minutes,
(c) at t = 20 minutes, (d) at ¢ = 40 minutes, and (e) at ¢ = 60 minutes.
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Figure 7.8: The dependency of species concentration at capillary wall on axial axis
(x) at ¢ = 5 minutes, (a) ligand [L]/[Lo], (b) FGFR, (c) HSPG, (d) FGF-2-FGFR
complex, (e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-HSPG complex and its dimer, (g)
FGF-2-HSPG complex and its dimer, (h) summation of [P]+ [G]+ [T]+ 2[G2] + 2[T3],
and (i) summation of [R] + [C] + [T] + 2[Cs] + 2[T3].

almost a half volume of the tube. At ¢ = 20 minutes, ligand can be seen at tube exit.
Due to biochemical reactions on the tube surface, more ligand is observed in the tube
center than near tube surface.

Biochemical reaction takes place on the tube surface. For the initial value problem,
the initial conditions of FGF-2 receptor (R) and signaling heparan sulfate proteogly-
can (P) has been set as Ry = 1.6 x 10*# /cell and Py = 3.36 x 10°#/cell respectively.
The concentrations of the nine species in the model under investigation are exhibited
in Figs. 7.8 ~ 7.12 for their dependency on time ¢ and location x corresponding to
u = 0.0001732 m/s. Fig. 7.8 is the solution at ¢ = 5 minutes, where [L] decreases
down the tube and almost no L has been detected in the region of x > 0.05m. This is
due to the fact that ligand has not yet been transported to that part of the tube. The

concentration of R and P has been reduced in the region of z < 0.05m because of

the bindings of FGF-2 to FGFR and HSPG. In the region where L exists, molecular
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Figure 7.9: The dependency of species concentration at capillary wall on axial axis
(x) at t = 10 minutes, (a) ligand [L]/[Lo], (b) FGFR, (c) HSPG, (d) FGF-2-FGFR
complex, (e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-HSPG complex and its dimer, (g)
FGF-2-HSPG complex and its dimer, (h) summation of [P]+ [G]+ [T] + 2[G2] + 2[T5],
and (i) summation of [R] + [C] + [T] + 2[Cs] + 2[T3].

complexes of C', Cy, T', T, GG, and G4 are formed. The concentrations of 7', T5, GG, and
(G5 decrease down the tube, while those of C and Cy are more complicated, and they
initially increase with respect to x to reach a maximum value and then decrease down
the tube. At ¢t = 20 minutes, L expands to the whole capillary, and its concentration
decreases along the capillary. As a consequence of the molecular binding, [R] and [P]
can be seen decreasing at the surface of the entire tube. The profiles of [C] and [C5]
are shown as first up and then down. As time goes from ¢ = 20 minutes to ¢ = 40
and ¢ = 60 minutes, the concentrations of L, P, and R keep decreasing. The concen-
trations of C' and Cy also decrease, while those of [T'], [T3], [G] and [Gs] increase. For
the condition of 4°C with no internalization, in all cases that have been studied, the
total mass of P and R is conserved, i.e., [R] + [C] + [T] + 2[C3] + 2[T»] = [Re] and
[P] + [G] + [T] + 2[G2] + 2[T3] = [Py] and maintained.
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Figure 7.10: The dependency of species concentration at capillary wall on axial axis
(x) at t = 20 minutes, (a) ligand [L]/[Lo], (b) FGFR, (c) HSPG, (d) FGF-2-FGFR
complex, (e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-HSPG complex and its dimer, (g)
FGF-2-HSPG complex and its dimer, (h) summation of [P]+ [G]+ [T]+ 2[G2] + 2[T3],
and (i) summation of [R] + [C] + [T] + 2[Cs] + 2[T3].

7.6.3 Ligand transport and binding at 37 °C

Under a temperature condition of 37°C, the internalization of R, P, C, G, T, Cj,

1

G2, and T5 has been considered with a dissociation rate of k;,; = 0.005min~" and

kP, = 0.078min"!, as shown in Table 7.1. Exactly the same computation procedure
as that in the case of 4°C has been conducted here, except the parameter changes due
to internalization, as indicated in the above text. The internalization process of the
eight components will cause their concentrations to become lower and consequently
affect the distribution of ligand in the solution. The transport of FGF-2 in the
capillary is visualized and displayed in Fig. 7.13 for inlet velocity of v = 0.0000866
m/s, where Figs. 7.13(a), 7.13(b), 7.13(c), 7.13(d), 7.13(e) corresponds to the results
at t = 5, 10, 20, 40, and 60 minutes respectively. The obtained contour plots are

very similar to those in the case of 4°C. In the early stage of ¢ < 20 minutes, the
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Figure 7.11: The dependency of species concentration at capillary wall on axial axis
(x) at t = 40 minutes, (a) ligand [L]/[Lo], (b) FGFR, (c) HSPG, (d) FGF-2-FGFR
complex, (e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-HSPG complex and its dimer, (g)
FGF-2-HSPG complex and its dimer, (h) summation of [P]+ [G]+ [T] + 2[G2] + 2[T5],
and (i) summation of [R] + [C] + [T] + 2[Cs] + 2[T3].

results of ligand concentration are almost the same for the compared two cases. For
example, Fig. 7.7(a) and Fig. 7.13(a) are exactly the same, so do Fig. 7.7(b) and
Fig. 7.13(b). After running for a longer time, the difference between the two cases
are becoming obvious. In the pair of Figs. 7.7(d) and 7.13(d), the same number of
contour levels are used, and their contour plots look very much alike, but the actual
values at each contour level are different. In the pair of Figs. 7.7(e) and 7.13(e), the
values at each contour level are even more different. Such evidence might indicate
that the internalization process may have a long time effect on the distribution of
FGF-2 in the circulation.

The same phenomenon has been observed on the tube surface, as is shown in
Figs. 7.14 ~ 7.18, in which the obtained results for the two cases of 4°C and 37°C
are presented together for comparison purpose, for [L|/[Ly], [R], [P], [C], [Ca], T, T,
(G], [Ga], [R] + [C] + [T] + 2[Cs] + 2[T3] and [P] + [G] + [T'] + 2[G5] + 2[T3], which
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Figure 7.12: The dependency of species concentration at capillary wall on axial axis
(x) at t = 60 minutes, (a) ligand [L]/[Lo], (b) FGFR, (c) HSPG, (d) FGF-2-FGFR
complex, (e) FGF-2-FGFR dimer, (f) FGF-2-FGFR-HSPG complex and its dimer, (g)
FGF-2-HSPG complex and its dimer, (h) summation of [P]+ [G]+ [T] + 2[G2] + 2[T5],
and (i) summation of [R] + [C] + [T] + 2[Cs] + 2[T3].

consists of eleven sub-figures. The effect of internalization can be seen more clearly
by this arrangement. Consistent with what has been observed of FGF-2 distribution
in the media, the concentration of FGF-2 near the tube surface does not change
by introducing internalization in a short period of time, ¢ < 20 minutes, shown in
Figs. 7.14 and 7.15, and does change in a long time of ¢ > 20 minutes, shown in
Figs. 7.17 and 7.18. The populations of the two FGF-2 binding sites, FGFR. (R) and
HSPG (P), do not differ very much for the two cases of 4°C and 37°C at ¢t = 5 and
10 minutes. No significant differences of population distribution have been observed
for the bound complexes FGF-2-FGFR, FGF-2-HSPG, and FGF-2-HSPG dimer for
the cases of 4°C and 37°C at ¢ = 5 and £ = 10 minutes. However, the population
distribution of FGF-2-FGFR-HSPG and its dimer has changed noticeably for the
two different temperature environment, at the early stage of the process, ¢ = 5 and

10 minutes. Figs. 7.14 and 7.15 clearly show that for the same amount of FGF-2,
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Figure 7.13: Visualization of ligand transport in the capillary at the condition of 37°C
and inlet velocity v = 0.0000866 m/s, (a) at ¢ = 5 minutes, (b) at ¢ = 10 minutes,
(c) at t = 20 minutes, (d) at ¢ = 40 minutes, and (e) at ¢ = 60 minutes.
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FGFR, and HSPG, less amount of FGF-2-FGFR dimer, FGF-2-FGFR-HSPG and
FGF-2-FGFR-HSPG dimer has been generated in the case of 37°C. This can explain
why the summations of [R]+ [C]+ [T+ 2[Ca] +2[T3] and [P]+[G]+ [T +2[G2] + 2[T5]
can not be kept constant in the environment of 37°C.

The internalization of some species and its effect on the summations of [R] +
[C]+ [T]+ 2[Cs] + 2[T3] and [P] + [G] + [T] 4 2[G2] + 2[T3] is closely related to FGF-
2 distribution in the solution. Only in the region where FGF-2 has already been
transported by convection and diffusion, the internalization effect can be seen. The
summations of [R]+ [C]+ [T]+ 2[Cs] + 2[T] and [P]+ [G] +[T] + 2[G2] + 2[T3] remain
constant in the region that lacks FGF-2. For the bound complexes, the concentrations
of T, Ty, G and G, are in the order of 103#/cell, while the concentrations of C' and Cy
are orders of magnitude lower. The impact of internalization process on components
distribution is mixed. The concentrations of FGF-2-HSPG complex, FGF-2-HSPG
dimer, FGF-2-FGFR-HSPG complex and FGF-2-FGFR-HSPG dimer are reduced due
to internalization. The reduction can be explained by the term that describes the
loss due to internalization for these components, in the ordinary differential equation
system that is obtained from the mass-action kinetics. For species of FGFR, HSPG,
and FGF-2-FGFR, however, their concentrations are increased by the internalization.
It seems not very reasonable at the first glimpse, but after taking a close look at the
corresponding model equations of the three components, the predicted increase in
concentration can be interpreted by Egs. (8.1), (8.6) and (8.2). In Eq. (8.1), one of
the dominant terms is —k.RG, which represents the loss of FGFR due to binding with
FGF-2-HSPG to form FGF-2-FGFR-HSPG complex. Since the concentration of FGF-
2-FGFR-HSPG on the surface is reduced by internalization, consequently, less FGFR
is involved in binding to FGF-2-HSPG, and the concentration of FGFR is increased
rather than reduced due to internalization. Eq. (8.6) governs the surface concentration

of HSPG, and the dominant term is —kf LP, which states the loss of P by binding
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Figure 7.14: The effect of internalization on species distribution at ¢ = 5 minutes, (a)
ligand [L]/[Lo], (b) FGFR, (c) HSPG, (d) FGF-2-FGFR complex, (e) FGF-2-FGFR
dimer, (f) FGF-2-FGFR-HSPG complex, (g) FGF-2-FGFR-HSPG dimer, (h) FGF-
2-HSPG complex, (i) FGF-2-HSPG dimer, (j) [P]+ [G] + [T] + 2[G2] + 2[T3], and (k)
[R] + [C] + [T] + 2[Cs] + 2[T3].

with ligand to form FGF-2-HSPG. A reduced concentration of FGF-2-HSPG on the
capillary surface means less HSPG loss, hence an increased concentration of P is
predicted by internalization. The concentration of FGF-2-FGFR is determined by

Eq. (8.2), in which kfLR is the dominant term. A large concentration of R results in

a large concentration of C.
7.6.4 The effect of low on ligand transport

The binding kinetics and signaling pathways of FGF-2 are very complicated, and
many mathematical models have been proposed to predict the behavior of FGF-2 in
fluid as well as cell surface [40, 36, 33, 29, 68, 43]. These models include pure reaction
models [40, 33, 43], where a system of ordinary differential equations is provided and
it is assumed that the movement of FGF-2 is not considered, and reaction-diffusion

models [36, 69, 29|, which are relatively more complex and the movement of FGF-
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Figure 7.15: The effect of internalization on species distribution at ¢ = 10 minutes,
(a) ligand [L]/[Lo|, (b) FGFR, (c) HSPG, (d) FGF-2-FGFR complex, (e¢) FGF-2-
FGFR dimer, (f) FGF-2-FGFR-HSPG complex, (g) FGF-2-FGFR-HSPG dimer, (h)
FGF-2-HSPG complex, (i) FGF-2-HSPG dimer, (j) [P]+[G]+ [T]+2[G2] + 2[T3] and
(k) [R] + [C] + [T] + 2[Cs] + 2[T3).
2 molecules from fluid to cell surface is modeled by diffusion. Filion and Popel [36]
proposed a one-dimensional diffusion-reaction model, in which FGF-2, FGF-2 dimers,
soluble heparin-like glycosaminoglycans (HLGAGs), FGF-2-HLGAG compounds, and
FGF-2 dimer-HLGAG compounds are located in the fluid layer. Those molecules
move from fluid to cell surface by diffusion. The diffusion model is valid only if the
fluid is quiescent, which is not consistent with the actual biological environment of
moving bio-fluids. Our model is unique, in which a coupled convection-diffusion-
reaction model is applied, and the motion of bio-fluids is fully considered.

Based on our proposed convection-diffusion-reaction model and the corresponding
simulation software, the effect of bio-fluid flow on ligand transport, which has never
been revealed previously, is able to be investigated systematically. As shown before,

Fig. 7.13 is the time dependent concentration distribution of ligand in the capillary

of flow velocity u = 0.0000866 m/s. Figs. 7.19 and 7.20 are the corresponding results
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Figure 7.16: The effect of internalization on species distribution at ¢ = 20 minutes,
(a) ligand [L]/[L¢], (b) FGFR, (c¢) HSPG, (d) FGF-2-FGFR complex, (e) FGF-2-
FGFR dimer, (f) FGF-2-FGFR-HSPG complex, (g) FGF-2-FGFR-HSPG dimer, (h)
FGF-2-HSPG complex, (i) FGF-2-HSPG dimer, (j) [P] + [G] + [T] + 2[G2] + 2[T3],
and (k) [R] + [C] + [T + 2[C,] + 2[T5).

when flow velocities are v = 0.0001732 m/s and v = 0.00003464 m/s, doubled and
reduced to one third respectively. All these three figures display the transient con-
centration field of FGF-2 in capillary for the first hour after FGF-2 is added to the
tube inlet. Five subfigures are included in each individual of Figs. 7.13, 7.19, and
7.20, for different time intervals, t = 5, t = 10, ¢t = 20, ¢t = 40, and ¢ = 60 minutes.
Our results clearly indicate that FGF-2 distribution is greatly affected by the flow
velocity. An increased flow velocity results in high concentrations of FGF-2 on the
capillary surface and at the tube exit, shown in Fig. 7.19. On the contrary, a reduced
velocity lowers concentrations of FGF-2 on the capillary surface as well as tube exit,
which can be seen in Fig. 7.20. If we denote high velocity v = 0.0001732 m/s, middle
velocity 4 = 0.0000866 m/s, and low velocity v = 0.00003464 m/s in the three test

cases, for example, at ¢ = 5 minutes, FGF-2 occupies more than a half space of the

capillary in high velocity case (Fig. 7.19(a)), reaches about one fourth of the tube
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Figure 7.17: The effect of internalization on species distribution at ¢ = 40 minutes,
(a) ligand [L]/[Lo|, (b) FGFR, (c) HSPG, (d) FGF-2-FGFR complex, (e¢) FGF-2-
FGFR dimer, (f) FGF-2-FGFR-HSPG complex, (g) FGF-2-FGFR-HSPG dimer, (h)
FGF-2-HSPG complex, (i) FGF-2-HSPG dimer, (j) [P] + [G] + [T] + 2[G2] + 2[T3],
and (k) [R] + [C] + [T] + 2[Cy] + 2[T5].

space in middle velocity case (Fig. 7.13(a)), and propagates to a location less than one
eighth of the tube length in the low velocity case (Fig. 7.20(a)). At ¢ = 60 minutes,

the normalized concentration of FGF-2 is between 0.6 and 0.7 in high velocity case,

around 0.4 in middle velocity case, and less than 0.1 in the low velocity case.

7.7 Discussion

Growth factors play a very important role in modulating cell activities of proliferation
and differentiation. The MAP kinase pathway starts with the growth factor ligand
binding to its transmembrane receptors followed by the activation of tyrosine kinases
inherent in the receptor molecules [98, 40]. Such activation triggers the dimerization
and phosphorylation of the transmembrane receptors. Computational models have
recently been applied to growth factor signaling systems, most of which are epidermal

growth factor (EGF) systems [68, 69]. A complex model has been used by Schoeberl
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Figure 7.18: The effect of internalization on species distribution at ¢ = 60 minutes,
(a) ligand [L]/[Lo|, (b) FGFR, (c) HSPG, (d) FGF-2-FGFR complex, (e¢) FGF-2-
FGFR dimer, (f) FGF-2-FGFR-HSPG complex, (g) FGF-2-FGFR-HSPG dimer, (h)
FGF-2-HSPG complex, (i) FGF-2-HSPG dimer, (j) [P] + [G] + [T] + 2[G2] + 2[T3],
and (k) [R] + [C] + [T] + 2[Cy] + 2[T5].

et al. [98] to study the activation of the MAP kinase signaling pathway by EGF,
and intracellular signaling steps have been represented by a majority of the 94 com-
pounds involved in the model. Complex models with up to 42 reactions have been
developed by Kholodenko and collaborators [56] to interpret EGF signaling by con-
sidering downstream interconnections. In contrast, far less modeling work has been
done on FGF system. Our work is focused on the modeling of extracellular binding of
FGF-2 on cell surface. Forsten et al. [39] and Fannon et al. [34] have previously stud-
ied the regulation of heparin and heparin-like molecules on FGF-2 binding in solution.
Filion and Popel [36] proposed a model to address the effect of FGF-2 dimerization
on surface interactions. Forsten-Williams et al. more recently proposed a kinetic
model [40], which consists of 60 reactions and 31 components including FGFR and
HSPG dimerization, to investigate FGF-2 binding to heparan sulfate proteoglycans

and MAP kinase signaling. That model is in a static environment where the con-
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Figure 7.19: Visualization of ligand transport in the capillary at the condition of 37°C
and inlet velocity u = 0.0001732 m/s, (a) at ¢ = 5 minutes, (b) at ¢ = 10 minutes,
(c) at ¢ = 20 minutes, (d) at ¢ = 40 minutes, and (e) at ¢ = 60 minutes.
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Figure 7.20: Visualization of ligand transport in the capillary at the condition of 37°C
and inlet velocity u = 0.00003464 m/s, (a) at t = 5 minutes, (b) at ¢ = 10 minutes,
(c) at t = 20 minutes, (d) at ¢ = 40 minutes, and (e) at ¢ = 60 minutes.
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centrations of receptor ligand, receptors, HSPGs, complexes, dimers and triads are
assumed to be uniformly distributed in the solution. This assumption is away from in
vivo situation to some extent. This paper presents a dynamic model for FGF-2 bind-
ing and signaling on cell surface to include bio-fluid flow in it, and the concentrations
of species are not necessarily assumed to be uniformly distributed in space. Currently
we adopt the FGF-2 surface binding model proposed by Forsten et al. [40], in which
dimers of FGFR or HSPG have been included as important signaling compounds.
This model further assumes that the first step in high affinity dimerization is the
formation of FGF-2-FGFR-HSPG triad and triads are formed by FGF-2 binding to
FGFR or HSPG. The significance of dimers in signaling can be seen from their con-
centrations. For example, according to our computational results, the concentrations
of HSPG dimers and FGF-2-FGFR-HSPG are in the order of 10, which is too high
to be neglected.

Our dynamic model puts FGF-2 binding and signaling in flow environment of a
capillary, where FGF-2 molecules move with circulation flow inside capillary, bind to
receptor and co-receptor molecules on tube surface, and signal MAP kinase pathway.
Under current computation frame work, the Reynolds number is far less than the criti-
cal value for transition to turbulence, and the capillary flow is typical Hagen-Poiseuille
flow with a parabolic profile, as indicated by our simulation results. The molecular
motion of FGF-2 is represented by a convection-diffusion equation in macroscale in
terms of concentration distribution, which is determined by media flow, diffusion co-
efficient of FGF-2 in media, and the rate of loss of FGF-2 due to reaction. Since
the reaction rate of FGF-2 is obtained by the coupled differential system, the FGF-2
distribution in flow and the surface concentrations of receptors, complexes, dimers
and triads are actually coupled. Our numerical solution reveals that the concentra-
tions of FGF-2, FGFR, HSPG, FGF-2-FGFR, FGF-2-HSPG, FGF-2-FGFR-HSPG,
FGF-2-FGFR dimer, FGF-2-HSPG dimer, and FGF-2-FGFR-HSPG dimer are indeed
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location dependent. No direct results can be found in literature for simulating FGF-2
binding and signaling using a convection-diffusion-reaction model. Both experimental
and computational work is required to investigate FGF-2 binding and signaling under
flow condition, and our results may serve as a useful starting point.

In many cases, cell surface interactions include growth factor binding to more than
a single receptor type. For example, heparin binding fibroblast growth factor-2 binds
to heparan sulfate proteoglycans on the cell surface and within extracellular matrix.
In this scenario, HSPG molecules have been considered accessory co-receptors serving
to facilitate tyrosine kinase receptor binding [40]. Recent investigations indicate that
HSPG molecules can act independently as signaling molecules besides their role as
receptor binding partner [40, 20, 48]. Forsten-Williams et al. found in their paper
[40] that HSPG played an important role in the kinetics of FGF-2 binding to FGFR
and in the absence of FGFR signaling the kinetics of HSPG binding and dimerization
correlated well with Erk1/2 signaling, indicating intracellular signal generated by
FGF-2 binding to HSPG, an alternative receptor type. The cell signaling due to
FGF-2 binding to HSPG can also be included in the current convection-diffusion-

reaction model.

7.8 Summary

A novel mathematical model is proposed to reveal the dynamic interactions among
FGF-2, its receptors, and HSPGs in bio-fluid. The complex model is solved by efficient
PDE and ODE solvers. Numerical results shown in the chapter clearly demonstrate
the significance of flow condition on FGF-2 transport, binding and signaling. Our
convection-diffusion-reaction model provides a way to simulate FGF-2 binding and
signaling on cell surface. A single proteoglycan species is considered in the current
simulation, and more proteoglycan species can be included in the model without much

effort. Dimerization of HSPG and FGFR, and internalization of HSPG, FGFR, FGF-
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2-FGFR, FGF-2-HSPG, FGF-2-FGFR-HSPG and dimers of FGF-2-FGFR, FGF-2-
HSPG, FGF-2-FGFR-HSPG have also been addressed in the model. Our results
indicate that internalization has significant impact on the populations of binding sites
and thereafter formed complexes on the tube surface, as well as FGF-2 distribution
in the media. Additional experimental and computational studies are required for a
better understanding of how cellular proteoglycans impact growth factor binding and
signaling in vivo environment to achieve the goal of disease-healing by manipulating

FGF-2-mediated cell activity.

Copyright ©) Wensheng Shen 2007
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8 Conclusion and Future Work

8.1 Conclusion

This dissertation presents our research work in computer modeling and simulation of
physics, chemistry, and biology using deterministic dynamics. The whole simulation
procedure is very complicated, which involves mathematical modeling, discretization
of differential equations, solution of linear and nonlinear systems, and scientific vi-
sualization. Several typical simulation examples are discussed in the dissertation,
including diffusion, convection-diffusion, and convection-diffusion-reaction problems.

The dissertation work is summarized as follows.

e A mathematical model describing the thermomechanical interactions in bio-
logical bodies at high temperature is proposed by treating the soft tissue in
biological bodies as a thermoporoelastic media. The heat transfer and elastic
deformation in soft tissues are examined based on the Pennes bioheat transfer
equation and the modified Duhamel-Neuman equations. The three dimensional
governing equations based on the proposed model is discretized using a 19 point
finite difference scheme. The resulting large sparse linear system is solved by a
preconditioned Krylov subspace method. Numerical simulations show that the
proposed model is valid under our test conditions and the proposed numerical

techniques are efficient.

e Numerical experiments including hyperthermia and sinusoidal heating are con-
ducted to investigate the heat transfer processes in soft tissues in biological
bodies. We obtained the expected time-dependent temperature distribution
as well as the corresponding thermal-induced mechanical responses. From the
information presented in the dissertation, it is not difficult to draw a conclu-
sion that the thermal-related mechanical properties can be modeled using the

proposed.method, and the technique introduced here can be used to predict
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the outcome of a possible heat related medical therapy and estimate the corre-

sponding damage to soft tissues due to high temperature exposure.

A three-dimensional (3D) multilayer model based on the skin physical structure
is developed to investigate the transient thermal response of human skin subject
to laser heating. The temperature distribution of the skin is modeled by the
bioheat transfer equation, and the influence of laser heating is expressed as
a source term where the strength of the source is a product of a Gaussian
shaped incident irradiance, an exponentially shaped axial attenuation, and a
time function. The water evaporation and diffusion is included in the model by
adding two terms regarding the heat loss due to the evaporation and diffusion,
where the rate of water evaporation is determined based on the theory of laminar
boundary layer. Cryogen spray cooling (CSC) in laser therapy is studied, as
well as its effect on the skin thermal response. The time-dependent equation is
discretized using the finite difference method with the Crank-Nicholson scheme
and the stability of the numerical method is analyzed. The large sparse linear
system resulted from discretizing the governing partial differential equation is

solved by GMRES solver and expected simulation results are obtained.

The three-dimensional multilayer model is further extended for the quantitative
prediction of skin injury resulting from certain thermal exposure on the surface.
The model is based on the skin damage equation proposed by Henriques and
Moritz for the process of protein denaturation. Different from the standard Ar-
rhenius model for protein damage rate, in which the activation energy includes
chemical reaction only, strain energy of tissue due to thermal stress is also
considered in the current model. Skin thermal response is modeled using the
bioheat transfer equation by including water diffusion on the skin surface, and

the corresponding thermal stress is predicted by using the modified Duhamel-
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Neuman equation. Strain energy is then obtained by the stress-strain relation.
The extent of burn injury is computed from the transient temperature solution

and the effect of strain energy on skin damage is investigated.

The newly-emerged vorticity-velocity formulation of the Navier-Stokes equa-
tions is used for both steady and unsteady compressible flows to avoid staggered
mesh discretization. The nonlinear Navier-Stokes equations are discretized us-
ing finite difference method, and a second-order backward Euler scheme is ap-
plied for the time derivatives. Central difference is used for diffusion terms
to achieve better accuracy, and a monotonicity-preserving upwind difference is
used for convective ones. We use an unequal-sized single grid mesh for unsteady
flow and a three level multigrid method for steady flow. The coupled nonlinear
system is solved via the damped Newton’s method for both steady and unsteady
flows. The Newton Jacobian matrix is formed numerically, and the resulting
linear system is ill-conditioned and is solved by the iterative solver Bi-CGSTAB

with the Gauss-Seidel preconditioner.

This dissertation introduces a novel convection-diffusion-reaction model to sim-
ulate fibroblast growth factor (FGF-2) binding to cell surface molecules of re-
ceptor and heparan sulfate proteoglycan and MAP kinase signaling under flow
condition. This model includes three parts: the flow of media using incompress-
ible Navier-Stokes equation, the transport of FGF-2 using a convection-diffusion
transport equation, and the local binding and signaling by chemical kinetics.
The whole model consists of a set of coupled nonlinear partial differential equa-
tions (PDEs) and a set of coupled nonlinear ordinary differential equations
(ODEs). To solve the time-dependent PDE system, we use a second order im-
plicit Euler method by finite volume discretization. The ODE system is stiff

and is solved by an ODE solver VODE using backward differencing formulation

134

www.manaraa.com



(BDF). The spatial distribution of FGF-2, FGFR, HSPG and their bond com-
plexes are obtained and presented. Findings from this study have implications

with regard to regulation of heparin-binding growth factors in circulation.

e Although there are many studies to investigate binding and signaling of angio-
genic molecule in extracellular matrix (ECM) and on cell surface, studies on
perlecan’s role as a competitive binding site in the blood stream to regulate the
bioavailability of other molecules are limited. At every moment a multitude of
molecules are transported simultaneously and continuously by blood circulation
to specific targets in the vasculature. Because of the complexity of this system,
it is difficult to characterize at a macro level using in vitro or in vivo approaches
alone. Computer modeling provides us with a powerful tool to test parameters
and conditions, such as multiple ligand interactions in solution and on vascular
surfaces under flow, which are indispensable for an accurate understanding of

the underlying physiological mechanism.

8.2 Future Work

Some fundamental work has been done related to simulation and modeling of physical
and biological processes. In depth research needs to be done to make the simulation
as close to nature phenomenon as possible, the linear and nonlinear solver as fast
and reliable as possible, and the visualization more realistic. Possible future research
directions in bioheat transfer, diffusion flame, and protein transport are listed as

follows.

e The simulation results presented in the dissertation are based on the assumption
that the skin tissue is basically water and the heat transfer in tissue is isotropic.
However, the tissue comprises of a microstructure embedded in a biofluid which
is basically salt, and the preferential orientation of the collagen fibres in the

dermisgnakes the tissue anisotropic. In other words, either the water diffusion
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or the heat transfer process in the skin tissue may be anisotropic. We may
investigate the anisotropic heat and mass transfer in biological tissue in the

future.

The vorticity-velocity formulation of the Navier-Stokes equations is used in the
dissertation for the simulation of laminar diffusion flame, to avoid staggered
grid arrangement and apply multigrid methods. However, the vorticity-velocity
formulation is not straight-forward in 3D geometry and difficulty to implement
in applications involving irregular boundaries. We may apply the widely used
pressure-based Navier-Stokes equations with colocated arrangements of vari-
ables in the future work. The colocated discretization will make the software
attractive to non-orthogonal grid, complex geometry, and multigrid method

with relatively easy efforts.

Develop a multiphysics mathematical model for simulating ligand-receptor bind-
ing, dissociation and transport in blood circulation using a group of nonlinear
differential equations. In the one phase model of ligand transport presented in
the dissertation, we consider blood stream as a single phase, and the proteins
are transported passively and their effect to blood flow is neglected. In the mul-
tiphase model, we may consider blood stream as a mixture of several phases, in
which plasma is considered as the continuous phase, while protein molecules are
regarded as dispersed phases. The multiphase model allows us to take a closer
look at the motion of protein molecules in the blood stream and its influence on
the fluid dynamic behavior of the mixture of blood and proteins. The dynamic
system can be modeled by a set of partial differential equations, where each

phase has its own continuity and momentum equations.
Develop high performance computing techniques, such as high order discretiza-

tion, multilevel multigrid acceleration, and efficient preconditioning to achieve
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the goal of high order accuracy and low computing cost. To be specific, adaptive
multilevel multigrid method can achieve high order accuracy by mesh refinement
in large gradient region and low computing cost by mesh coarsening in small

gradient region.

The mathematical models and corresponding software for diffusion flame sim-
ulation and protein transport prediction in circulation are developed for 2D
applications in axisymmetrical coordinates. We would like to extend the 2D
codes to 3D for applications involved in complex 3D geometries, such as real
combustion chambers, buildings that catch fire, blood flows in heart and lung.
In such cases, the assumption of axisymmetry may not be applicable. The ex-
tension from 2D to 3D is a tedious as well as challenging work, but it will make

our simulation closer to reality.

The load of computing is very heavy for 2D applications with fine mesh, and
even more burdensome for 3D applications. It may take a single workstation or
PC hours, days, or weeks for a computation task. We will parallelize the code
through message passing interface (MPI) libraries by the method of domain
decomposition to cut the solution time. The parallel code may be run on super

computers or linux clusters.

Copyright ©) Wensheng Shen 2007
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Appendix

The model system used in the current study consists of the following 9 equations,

which describe the rate of components change with respect to time.

about the system that expresses only a single class of HSPG [40]:

dR
dC R R 2
—7 = FLR = k'C = kCP = keC® + 2k Cy = kiniC,
dCy k.
F == ECQ - kucC2 - kilthC%
dT T 2
_dt = kCRG -+ KCCP — kr T — ch + 2ku6T2 — kintTa
dT: k.
o =2 kel kT
dP P P T
dG P P 2
—dt = kf LP — kT G — kCRG - kCG + 2kch2 - kintG7
dG ke
d—t2 = 5G2 - kch2 - k’intGZa
dL R R T P R

This model is

(8.1)

(8.2)
(8.3)
(8.4)
(8.5)
(8.6)
(8.7)
(8.8)

(8.9)

where L is FGF-2, R is FGFR, C is FGF-2-FGFR complex, P is HSPG, G is FGF-

2-HSPG complex, T"is FGF-2-FGFR-HSPG complex, Cs is FGF-2-FGFR dimer, G,

is FGF-2-HSPG dimer, and 75 is FGF-2-FGFR-HSPG dimer.
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